Critical care : the official journal of the Critical Care Forum
-
Cost is a key concern in fluid management. Relatively few data are available that address the comparative total costs of care between different fluid management regimens in particular clinical indications. Relevant costs of fluid-associated morbidity and mortality, including those incurred after intensive care unit or hospital discharge, also need to be considered in evaluating the cost-benefit ratios of administered fluids. Rigorously designed pharmacoeconomic studies are needed to delineate the costs and benefits of various approaches to fluid management.
-
Our current state of knowledge on noninvasive positive pressure ventilation (NPPV) and technical aspects are discussed in the present review. In patients with chronic obstructive pulmonary disease, NPPV can be considered a valid therapeutic option to prevent endotracheal intubation. ⋯ The conventional use of NPPV in hypoxaemic acute respiratory failure still remains controversial, however. Large randomized studies are still needed before extensive clinical application in this condition.
-
According to the Frank-Starling relationship, a patient is a 'responder' to volume expansion only if both ventricles are preload dependent. Mechanical ventilation induces cyclic changes in left ventricular (LV) stroke volume, which are mainly related to the expiratory decrease in LV preload due to the inspiratory decrease in right ventricular (RV) filling and ejection. In the present review, we detail the mechanisms by which mechanical ventilation should result in greater cyclic changes in LV stroke volume when both ventricles are 'preload dependent'. We also address recent clinical data demonstrating that respiratory changes in arterial pulse (or systolic) pressure and in Doppler aortic velocity (as surrogates of respiratory changes in LV stroke volume) can be used to detect biventricular preload dependence, and hence fluid responsiveness in critically ill patients.
-
Review
Fluid balance and colloid osmotic pressure in acute respiratory failure: emerging clinical evidence.
Available evidence suggests that both hydrostatic and osmotic forces are important in the development of acute respiratory distress syndrome (ARDS) or, more broadly, acute lung injury (ALI). More than 80% of ARDS patients in a large-scale randomized controlled trial (RCT) exhibited, at least intermittently, pulmonary artery wedge pressures (PAWP) above 18 mmHg. Retrospective analyses have shown that PAWP elevation is associated with increased mortality. ⋯ These results provide evidence that combined therapy with furosemide and albumin is effective in augmenting serum albumin and STP levels, promoting weight loss, and improving oxygenation and longer-term hemodynamic stability. Although mortality did not differ between groups, the RCT showed a trend toward reduced duration of mechanical ventilation and length of stay in the intensive care unit in patients receiving furosemide + albumin. The findings of the RCT further highlight the importance of both hydrostatic and osmotic forces in hypoxemic respiratory failure, a subject that requires further investigation.
-
Practice guidelines on weaning should be based on the results of several well-designed randomized studies performed over the last decade. One of those studies demonstrated that immediate extubation after successful trials of spontaneous breathing expedites weaning and reduces the duration of mechanical ventilation as compared with a more gradual discontinuation of ventilatory support. ⋯ In patients with unsuccessful weaning trials, a gradual withdrawal for mechanical ventilation can be attempted while factors responsible for the ventilatory dependence are corrected. Two randomized studies found that, in difficult-to-wean patients, synchronized intermittent mandatory ventilation (SIMV) is the most ineffective [corrected] method of weaning.