Critical care : the official journal of the Critical Care Forum
-
Observational Study
Alteration in early resting‑state functional MRI activity in comatose survivors of cardiac arrest: a prospective cohort study.
This study aimed to explore the characteristics of abnormal regional resting-state functional magnetic resonance imaging (rs-fMRI) activity in comatose patients in the early period after cardiac arrest (CA), and to investigate their relationships with neurological outcomes. We also explored the correlations between jugular venous oxygen saturation (SjvO2) and rs-fMRI activity in resuscitated comatose patients. We also examined the relationship between the amplitude of the N20-baseline and the rs-fMRI activity within the intracranial conduction pathway of somatosensory evoked potentials (SSEPs). ⋯ This study revealed that abnormal rs-fMRI BOLD signals in resuscitated patients showed complex changes, characterized by increased activity in some local brain regions and reduced activity in others. Abnormal BOLD signals were associated with neurological outcomes in resuscitated patients. The mean ALFF values of the whole brain were closely related to SjvO2 levels, and changes in the thalamic BOLD signals correlated with the N20-baseline amplitudes of SSEP responses.
-
High-quality cardiopulmonary resuscitation (CPR) can restore spontaneous circulation (ROSC) and neurological function and save lives. We conducted an umbrella review, including previously published systematic reviews (SRs), that compared mechanical and manual CPR; after that, we performed a new SR of the original studies that were not included after the last published SR to provide a panoramic view of the existing evidence on the effectiveness of CPR methods. ⋯ Given the significant heterogeneity and methodological limitations of the included studies and SRs, our findings do not provide definitive evidence to support the superiority of mechanical CPR over manual CPR. However, mechanical CPR can serve better where high-quality manual CPR cannot be performed in selected situations.
-
Observational Study
Critical thresholds of long-pressure reactivity index and impact of intracranial pressure monitoring methods in traumatic brain injury.
Moderate-to-severe traumatic brain injury (TBI) has a global mortality rate of about 30%, resulting in acquired life-long disabilities in many survivors. To potentially improve outcomes in this TBI population, the management of secondary injuries, particularly the failure of cerebrovascular reactivity (assessed via the pressure reactivity index; PRx, a correlation between intracranial pressure (ICP) and mean arterial blood pressure (MAP)), has gained interest in the field. However, derivation of PRx requires high-resolution data and expensive technological solutions, as calculations use a short time-window, which has resulted in it being used in only a handful of centers worldwide. As a solution to this, low resolution (longer time-windows) PRx has been suggested, known as Long-PRx or LPRx. Though LPRx has been proposed little is known about the best methodology to derive this measure, with different thresholds and time-windows proposed. Furthermore, the impact of ICP monitoring on cerebrovascular reactivity measures is poorly understood. Hence, this observational study establishes critical thresholds of LPRx associated with long-term functional outcome, comparing different time-windows for calculating LPRx as well as evaluating LPRx determined through external ventricular drains (EVD) vs intraparenchymal pressure device (IPD) ICP monitoring. ⋯ Our work suggests that the underlying prognostic factors causing impairment in cerebrovascular reactivity can, to some degree, be detected using lower resolution PRx metrics (similar found thresholding values) with LPRx found clinically using as low as 10 min-by-minute samples of MAP and ICP. Furthermore, EVD derived LPRx with intermittent cerebrospinal fluid draining, seems to present similar outcome capacity as IPD. This low-resolution low sample LPRx method appears to be an adequate substitute for the clinical prognostic value of PRx and may be implemented independent of ICP monitoring method when PRx is not feasible, though further research is warranted.