Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial Multicenter Study
Endothelial damage in septic shock patients as evidenced by circulating syndecan-1, sphingosine-1-phosphate and soluble VE-cadherin: a substudy of ALBIOS.
Septic shock is characterized by breakdown of the endothelial glycocalyx and endothelial damage, contributing to fluid extravasation, organ failure and death. Albumin has shown benefit in septic shock patients. Our aims were: (1) to identify the relations between circulating levels of syndecan-1 (SYN-1), sphingosine-1-phosphate (S1P) (endothelial glycocalyx), and VE-cadherin (endothelial cell junctions), severity of the disease, and survival; (2) to evaluate the effects of albumin supplementation on endothelial dysfunction in patients with septic shock. ⋯ ALBIOS ClinicalTrials.gov number NCT00707122.
-
In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. ⋯ Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).
-
Randomized Controlled Trial Multicenter Study Observational Study
Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: an analysis of three multicentre observational studies.
A recent randomised trial showed that recombinant thrombomodulin did not benefit patients who had sepsis with coagulopathy and organ dysfunction. Several recent studies suggested presence of clinical phenotypes in patients with sepsis and heterogenous treatment effects across different sepsis phenotypes. We examined the latent phenotypes of sepsis with coagulopathy and the associations between thrombomodulin treatment and the 28-day and in-hospital mortality for each phenotype. ⋯ We identified four coagulation marker-based sepsis phenotypes. The treatment effects of thrombomodulin varied across sepsis phenotypes. This finding will facilitate future trials of thrombomodulin, in which a sepsis phenotype with high FDP and D-dimer can be targeted.
-
Observational Study
Identification of novel sublingual parameters to analyze and diagnose microvascular dysfunction in sepsis: the NOSTRADAMUS study.
The availability of handheld, noninvasive sublingual video-microscopes allows for visualization of the microcirculation in critically ill patients. Recent studies demonstrate that reduced numbers of blood-perfused microvessels and increased penetration of erythrocytes into the endothelial glycocalyx are essential components of microvascular dysfunction. The aim of this study was to identify novel microvascular variables to determine the level of microvascular dysfunction in sepsis and its relationship with clinical variables. ⋯ We introduce new important diameter-specific quantification and differentiated analysis of RBC kinetics, a key to understand microvascular dysfunction in sepsis. MVHSdynamic, which has a broad bandwidth to detect microvascular (dys-) function, might serve as a valuable tool to detect microvascular impairment in critically ill patients.
-
In patients ventilated with tidal volume (Vt) < 8 mL/kg, pulse pressure variation (PPV) and, likely, the variation of distensibility of the inferior vena cava diameter (IVCDV) are unable to detect preload responsiveness. In this condition, passive leg raising (PLR) could be used, but it requires a measurement of cardiac output. The tidal volume (Vt) challenge (PPV changes induced by a 1-min increase in Vt from 6 to 8 mL/kg) is another alternative, but it requires an arterial line. We tested whether, in case of Vt = 6 mL/kg, the effects of PLR could be assessed through changes in PPV (ΔPPVPLR) or in IVCDV (ΔIVCDVPLR) rather than changes in cardiac output, and whether the effects of the Vt challenge could be assessed by changes in IVCDV (ΔIVCDVVt) rather than changes in PPV (ΔPPVVt). ⋯ During mechanical ventilation with Vt = 6 mL/kg, the effects of PLR can be assessed by changes in PPV. If IVCDV is used, it should be expressed in percent and not absolute changes. The effects of the Vt challenge can be assessed on PPV, but not on IVCDV, since the diagnostic threshold is too small compared to the reproducibility of this variable.