Critical care : the official journal of the Critical Care Forum
-
Observational Study
Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study).
The EMiC2 membrane is a medium cut-off haemofilter (45 kiloDalton). Little is known regarding its efficacy in eliminating medium-sized cytokines in sepsis. This study aimed to explore the effects of continuous veno-venous haemodialysis (CVVHD) using the EMiC2 filter on cytokine clearance. ⋯ EMiC2-CVVHD achieved modest removal of most cytokines and demonstrated small to no adsorptive capacity despite a decline in plasma cytokine concentrations. This suggests that changes in plasma cytokine concentrations may not be solely influenced by extracorporeal removal.
-
Extracorporeal life support (ECLS) has become an integral part of modern intensive therapy. The choice of support mode depends largely on the indication. Patients with respiratory failure are predominantly treated with a venovenous (VV) approach. We hypothesized that mortality in Germany in ECLS therapy did not differ from previously reported literature METHODS: Inpatient data from Germany from 2007 to 2018 provided by the Federal Statistical Office of Germany were analysed. The international statistical classification of diseases and related health problems codes (ICD) and process keys (OPS) for extracorporeal membrane oxygenation (ECMO) types, acute respiratory distress syndrome (ARDS) and hospital mortality were used. ⋯ ARDS is a severe disease with a high mortality rate despite ECLS therapy. Although endpoints and timing of the evaluations differed from those of the CESAR and EOLIA studies and the Extracorporeal Life Support Organization (ELSO) Registry, the reported mortality in these studies was lower than in the present analysis. Further prospective analyses are necessary to evaluate outcomes in ECMO therapy at the centre volume level.
-
Sepsis is a life-threatening condition accompanied by organ dysfunction subsequent to a dysregulated host response to infection. Up to 60% of patients with sepsis develop acute kidney injury (AKI), which is associated with a poor clinical outcome. The pathophysiology of sepsis-associated AKI (sepsis-AKI) remains incompletely understood, but mitochondria have emerged as key players in the pathogenesis. Therefore, our aim was to identify mitochondrial damage in patients with sepsis-AKI. ⋯ Sepsis-AKI induces mitochondrial DNA damage in the human kidney, without upregulation of mitochondrial quality control mechanisms, which likely resulted in a reduction in mitochondrial mass.