Critical care : the official journal of the Critical Care Forum
-
After the World Health Organization declared COVID-19 to be a pandemic, the elaboration of comprehensive and preventive public policies became important in order to stop the spread of the disease. However, insufficient or ineffective measures may have placed health professionals and services in the position of having to allocate mechanical ventilators. This study aimed to identify instruments, analyze their structures, and present the main criteria used in the screening protocols, in order to help the development of guidelines and policies for the allocation of mechanical ventilators in the COVID-19 pandemic. ⋯ Few instruments included public participation in their construction or validation. We believe that the elaboration of these guidelines cannot be restricted to specialists as this question involves ethical considerations which make the participation of the population necessary. Finally, we propose seventeen elements that can support the construction of screening protocols in the COVID-19 pandemic.
-
High positive end-expiratory pressures (PEEP) may induce overdistension/recruitment and affect ventilation-perfusion matching (VQMatch) in mechanically ventilated patients. This study aimed to investigate the association between PEEP-induced lung overdistension/recruitment and VQMatch by electrical impedance tomography (EIT). ⋯ Change of ventilation-perfusion matching was associated with regional overdistention and recruitment induced by PEEP. A low O/R ratio induced by high PEEP might indicate a more homogeneous ventilation and improvement of VQMatch.
-
Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. ⋯ This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.