Critical care : the official journal of the Critical Care Forum
-
An outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that started in Wuhan, China, at the end of 2019 has become a global pandemic. Both SARS-CoV-2 and SARS-CoV enter host cells via the angiotensin-converting enzyme 2 (ACE2) receptor, which is expressed in various human organs. We have reviewed previously published studies on SARS and recent studies on SARS-CoV-2 infection, named coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO), confirming that many other organs besides the lungs are vulnerable to the virus. ⋯ Restoring the balance between the RAS and ACE2/angiotensin-(1-7)/MAS may help attenuate organ injuries. SARS-CoV-2 enters lung cells via the ACE2 receptor. The cell-free and macrophage-phagocytosed virus can spread to other organs and infect ACE2-expressing cells at local sites, causing multi-organ injury.
-
Clostridioides difficile infection (CDI) is a leading cause of nosocomial diarrhea. Patients receiving enteral nutrition (EN) in the intensive care unit (ICU) are potentially at high risk of CDI. In the present study, we assessed the risk factors and intestinal microbiome of patients to better understand the occurrence and development of CDI. ⋯ ICU patients receiving EN have a high prevalence of CDI and a fragile intestinal microbial environment. History of cerebral infarction and prior treatment with metronidazole are considered as vital risk and protective factors, respectively. We propose that the emergence of CDI could cause a protective alteration of the intestinal microbiota. Additionally, Bacteroides loads seem to be closely related to the occurrence and development of CDI.
-
Dysregulation of the host immune response is a pathognomonic feature of sepsis. Abnormal physiological conditions are understood to shift efficient linear splicing of protein-coding RNA towards non-canonical splicing, characterized by the accumulation of non-coding circularized (circ)RNA. CircRNAs remain unexplored in specific peripheral blood mononuclear cells (PBMCs) during sepsis. We here sought to identify and characterize circRNA expression in specific PBMCs of patients with sepsis due to community-acquired pneumonia (CAP) relative to healthy subjects. ⋯ We provide a benchmark map of circRNA expression dynamics in specific immune cell subsets of sepsis patients secondary to CAP. CircRNAs were more abundant in immune cells of sepsis patients relative to healthy subjects. Further studies evaluating circRNA expression in larger cohorts of sepsis patients are warranted.