Critical care : the official journal of the Critical Care Forum
-
Fluid resuscitation has long been a cornerstone of pre-hospital trauma care, yet its optimal approach remains undetermined. Although a liberal approach to fluid resuscitation has been linked with increased complications, the potential survival benefits of a restrictive approach in blunt trauma patients have not been definitively established. Consequently, equipoise persists regarding the optimal fluid resuscitation strategy in this population. ⋯ Considerable variability exists in pre-hospital fluid resuscitation strategies for blunt trauma patients. Our data suggest a trend towards reduced pre-hospital fluid administration over time. This trend appears to be associated with improved coagulation function and decreased mortality rates. However, we acknowledge that these outcomes are influenced by multiple factors, including other improvements in pre-hospital care over time. Future research should aim to identify which trauma populations may benefit, be harmed, or remain unaffected by different pre-hospital fluid resuscitation strategies.
-
Despite increasing therapeutic options and disposable resources, cardiogenic shock (CS) remains a formidable condition with high mortality. Today, veno-arterial extracorporeal membrane oxygenation and microaxial flow devices (Impella, Abiomed, Danvers, USA) are established forms of mechanical circulatory support (MCS) in CS, with increasing application over the years. ⋯ Despite these recommendations and increasing application, current evidence from randomized controlled trials has not provided clear mortality benefit. Thus, reflection on current evidence is hereby justified.
-
Prone positioning (PP) homogenizes ventilation distribution and may limit ventilator-induced lung injury (VILI) in patients with moderate to severe acute respiratory distress syndrome (ARDS). The static and dynamic components of ventilation that may cause VILI have been aggregated in mechanical power, considered a unifying driver of VILI. PP may affect mechanical power components differently due to changes in respiratory mechanics; however, the effects of PP on lung mechanical power components are unclear. This study aimed to compare the following parameters during supine positioning (SP) and PP: lung total elastic power and its components (elastic static power and elastic dynamic power) and these variables normalized to end-expiratory lung volume (EELV). ⋯ In patients with moderate to severe ARDS, PP reduced lung total elastic and elastic static power compared with SP regardless of EELV normalization because comparable transpulmonary pressures and EELV were achieved at lower airway pressures. This resulted in improved gas exchange, hemodynamics, and oxygen delivery.
-
Multicenter Study Observational Study
Flow starvation during square-flow assisted ventilation detected by supervised deep learning techniques.
Flow starvation is a type of patient-ventilator asynchrony that occurs when gas delivery does not fully meet the patients' ventilatory demand due to an insufficient airflow and/or a high inspiratory effort, and it is usually identified by visual inspection of airway pressure waveform. Clinical diagnosis is cumbersome and prone to underdiagnosis, being an opportunity for artificial intelligence. Our objective is to develop a supervised artificial intelligence algorithm for identifying airway pressure deformation during square-flow assisted ventilation and patient-triggered breaths. ⋯ Recurrent neural network model appears excellent to identify airway pressure deformation due to flow starvation. It could be used as a real-time, 24-h bedside monitoring tool to minimize unrecognized periods of inappropriate patient-ventilator interaction.