Neuromodulation : journal of the International Neuromodulation Society
-
Internally powered, implanted pulse generators (IPGs) have been an important advance in spinal cord stimulation for the management of pain, but they require surgical replacement, with attendant cost and risk, when the implanted battery is depleted. Battery life is determined by the programmed settings of the implant, but until now the technical means to optimize settings for maximal battery life, delaying surgical replacement as long as possible, Materials and Methods. We have developed a patient-interactive, computerized programmer for use with IPGs. It has been designed for easy operation and comprehensive data management, which have not been features of the standard programmers available until now. ⋯ We conclude that significant potential savings in longevity of the implanted battery are possible in the majority of patients with implanted spinal cord stimulators, but have not been realized until now for lack of appropriate methods. Computerized, patient-interactive programming addresses this problem and allows optimization of estimated battery life along with other treatment goals. Long-term clinical followup will be required to establish the full magnitude of the resulting savings.
-
Spinal cord stimulation (SCS) is a popular method of treatment of chronic pain. Unfortunately, migration of the lead continues to be a serious complication of this therapy. ⋯ The use of "midline anchoring" resulted in a decrease in lead migration from 23% to 6% after trial insertion and from 24% to 7% after implantation. We conclude that "midline anchoring" of the SCS lead is an effective method of preventing lead migration.
-
Deep brain stimulation (DBS) therapy is a continually expanding field of functional neurosurgery for the treatment of movement disorders and neuropathic pain. However, occurrence of adverse events related to implanted hardware cannot be ignored, particularly in patients with dystonic conditions. We report on two such patients who required emergency hospital admission and pulse generator re-implantation following sudden and unexpected cessation of DBS effectiveness resulting from battery failure.
-
The effect of spinal cord stimulation (SCS) on cerebral blood flow (CBF) has, in the past, been evaluated by semiquantitative techniques, but has not been used to treat CBF diseases. The aim of this study was to assess the effect of cervical SCS on regional blood flow by both semiquantitative and quantitative methods. Thirty-five patients with cervical SCS-implanted devices were enrolled. ⋯ During cervical SCS there was a significant and bilateral increase in systolic (21%) and diastolic (26%) velocity in the MCA and in CCA blood flow (50%). We conclude that cervical SCS increases blood flow in the middle cerebral artery and common carotid artery. The consistent increase supports the potential usefulness of cervical SCS as an adjuvant treatment for cerebral blood flow diseases.