Neuromodulation : journal of the International Neuromodulation Society
-
Minimally conscious state (MCS) is a disorder of consciousness in which minimal but definite behavioral evidence of self-awareness or environmental awareness is demonstrated. Deep brain stimulation (DBS) of various targets has been used to promote recovery in patients with disorders of consciousness with varying results. The aim of this systematic review was to assess the effects of DBS in MCS following traumatic brain injury (TBI). ⋯ Current evidence is based on a small population of heterogeneous patients. The time from injury to stimulation was significantly variable and problematic, as spontaneous recovery can occur within the first year of injury. Although seven patients showed promising results in validated outcome measures, evidence supporting the use of DBS in MCS patients following TBI is lacking. There is need for controlled and randomized studies.
-
Although deep brain stimulation (DBS) is an effective treatment for movement disorders, improvement varies substantially in individuals, across clinical trials, and over time. Noninvasive biomarkers that predict the individual response to DBS could be used to optimize outcomes and drive technological innovation in neuromodulation. We sought to evaluate whether noninvasive event related potentials elicited by subthalamic DBS during surgical targeting predict the tolerability of a given stimulation site in patients with advanced Parkinson's disease. ⋯ Event related potentials elicited by DBS can predict clinically relevant corticospinal activation by stimulation after surgery. Noninvasive scalp physiology requires no patient interaction and could serve as a biomarker to guide targeting, postoperative programming, and emerging technologies such as directional and closed-loop stimulation.
-
Deep brain stimulation (DBS) and stereo-electroencephalography (SEEG) electrode implantation are the most important and frequent manipulations in nonhuman primates (NHP) neuromodulation research. However, traditional methods tend to be arduous and inaccurate. ⋯ The application of robot-assisted lead implantation in NHP neuromodulation research is feasible, accurate, safe, and efficient, and can prospectively be beneficial to neurological studies.
-
Comparative Study
Accuracy of Intraoperative Computed Tomography in Deep Brain Stimulation-A Prospective Noninferiority Study.
Clinical response to deep brain stimulation (DBS) strongly depends on the appropriate placement of the electrode in the targeted structure. Postoperative MRI is recognized as the gold standard to verify the DBS-electrode position in relation to the intended anatomical target. However, intraoperative computed tomography (iCT) might be a feasible alternative to MRI. ⋯ Intraoperative CT is noninferior to MRI for the verification of the DBS-electrode position. CT and MRI have their specific benefits, but both should be considered equally suitable for assessing accuracy.
-
Ensemble recording methods are pervasive in basic and clinical neuroscience research. Invasive neural implants are used in patients with drug resistant epilepsy to localize seizure origin, in neuropsychiatric or Parkinson's patients to alleviate symptoms via deep brain stimulation, and with animal models to conduct basic research. Studies addressing the brain's physiological response to chronic electrode implants demonstrate that the mechanical trauma of insertion is followed by an acute inflammatory response as well as a chronic foreign body response. Despite use of invasive recording methods with animal models and humans, little is known of their effect on behavior in healthy populations. ⋯ Our results suggest that chronic implants did not produce significant impairments on DNMS performance.