Neuromodulation : journal of the International Neuromodulation Society
-
To investigate the efficacy of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Meige syndrome. ⋯ These findings demonstrate that the STN is an effective brain target for the treatment of patients with Meige syndrome. STN-DBS was not only able to improve patients' motor symptoms, but also their sleep status.
-
Deep brain stimulation (DBS) is a well-established therapy for the management of patients with advanced Parkinson's disease and other movement disorders. Patients implanted with DBS require life-long management of the medical device as well as medications. Patients are often challenged to frequently visit the specialized DBS centers and such challenges are aggravated depending on geography, socioeconomic factors, and support systems. We discuss the need for digital health solutions to overcome these barriers to better and safely take care of patients, especially in the current COVID-19 pandemic. ⋯ For patients with Parkinson's disease, digital health has the potential to drastically change the landscape after DBS surgery. Furthermore, technology is fundamental in connectivity, diagnostic evaluation, and security in order to create stable and useful patient-focused care.
-
Case Reports Observational Study
Long-Term Deep Brain Stimulation in Treatment-Resistant Obsessive-Compulsive Disorder: Outcome and Quality of Life at Four to Eight Years Follow-Up.
Obsessive compulsive disorder (OCD) is a severe disabling disease, and around 10% of patients are considered to be treatment-resistant (tr) in spite of guideline-based therapy. Deep brain stimulation (DBS) has been proposed as a promising treatment for patients with trOCD. However, the optimal site for stimulation is still a matter of debate, and clinical long-term follow-up observations including data on quality of life are sparse. We here present six trOCD patients who underwent DBS with electrodes placed in the bed nucleus of the stria terminalis/anterior limb of the internal capsule (BNST/ALIC), followed for four to eight years after lead implantation. ⋯ Chronic DBS of ALIC provides long-term benefit up to four to eight years in trOCD, although not all patients take profit. Targeting the BNST was not particularly relevant since no patient appeared to benefit from direct stimulation of the BNST. Quality of life improved in DBS responders, documented by improved QoL scores and, even more important, by regaining of autonomy and improving psychosocial functioning.
-
The effects of thalamic stimulation of the anterior part of the ventral posterolateral nucleus (VPLa) for central poststroke pain (CPSP) and the pain-related electrophysiological characteristics of this structure were investigated. ⋯ Adequate and stable pain relief with thalamic VPLa stimulation is obtainable in patients with CPSP who exhibit hyperactivity and electrical instability along the trajectory to this nucleus. Both responders and nonresponders were found to have severe dysfunction of the lemniscal system.
-
The underlying mechanisms behind the therapeutic and side effects of deep brain stimulation (DBS) need further investigation. The utilization of transgenic mouse lines is a suitable approach to better understand the cellular and network effects of DBS. However, not many bilateral DBS studies have been conducted in mice. This might be due to a lack of commercially available bilateral DBS constructs. ⋯ The DBS electrode construct and implantation method described can be used for long-term DBS studies to further investigate the mechanisms underlying DBS.