Neuromodulation : journal of the International Neuromodulation Society
-
Obsessive-compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. Deep brain stimulation (DBS) is a treatment option for severe therapy-resistant OCD. ⋯ Our findings show that in VC/VS stimulation, the neural network associated with clinical outcome shows overlap with that of previously described for other targets namely the anterior limb of the internal capsula, the nucleus accumbens, or the STN, which supports the evolvement from the concept of an optimal gray matter target to conceiving the target as part of a symptom modulating network.
-
Following electrode implantation, a subgroup of patients treated with deep brain stimulation (DBS) for focal epilepsy exhibits a reduction of seizure frequency before stimulation is initiated. Microlesioning of the target structure has been postulated to be the cause of this "insertional" effect (IE). We examined the occurrence and duration of this IE in a group of patients with focal epilepsy following electrode implantation in the anterior nuclei of the thalamus (ANT) and/or nucleus accumbens (NAC) for DBS treatment. ⋯ An IE might explain seizure frequency reduction in our cohort. This effect seems to be independent of the number of implanted electrodes and of the target itself. The time course of the blinded subgroup of epilepsy patients suggests a peak of the lesional effect at two to three months after electrode insertion.
-
Patients with essential tremor treated with thalamic deep brain stimulation may experience increased tremor with the progression of their disease. Initially, this can be counteracted with increased stimulation. Eventually, this may cause unwanted side-effects as the circumferential stimulation from a standard ring contact spreads into adjacent regions. Directional leads may offer a solution to this clinical problem. We aimed to compare the ability of a standard and a directional system to reduce tremor without side-effects and to improve the quality of life for patients with advanced essential tremor. ⋯ In this cohort of advanced essential tremor patients who no longer had ideal tremor reduction with a standard system, replacing their deep brain stimulation with a directional system significantly improved their tremor and quality of life. Up-front implantation of directional deep brain stimulation leads may provide better tremor control in those patients who progress at a later time point.
-
Deep brain stimulation (DBS) is considered an effective and safe treatment for patients with primary Meige syndrome (MS). Both the subthalamic nucleus (STN) and globus pallidus pars internus (Gpi) have been shown to be optional targets for electrode implantation to improve clinical symptoms, but the relationship between clinical outcomes and target is still unclear. The current study aims to compare the clinical outcomes of DBS with different electrode targets for primary MS. ⋯ The curative effects of STN-DBS and Gpi-DBS on patients with primary MS are similar. Both the STN and Gpi could be effective targets of DBS for primary MS.
-
Case Reports
Long-Term Outcome and Neuroimaging of Deep Brain Stimulation in Holmes Tremor: A Case Series.
Different deep brain stimulation (DBS) targets have been suggested as treatment for patients with pharmacologically refractory Holmes tremor (HT). We report the clinical and quality of life (QoL) long-term (up to nine years) outcome in four patients with HT treated with DBS (in thalamic ventral intermediate nucleus-VIM or in dentato-rubro-thalamic tract-DRTT). ⋯ The benefits of DBS in HT might not be always long lasting. Although QoL slightly improved, this change seemed to be independent of the motor outcome following DBS. The estimation of DBS target and VTA proximity could be a useful tool for DBS clinicians in order to facilitate the DBS programming process and optimize DBS treatment.