Neuromodulation : journal of the International Neuromodulation Society
-
Obsessive-compulsive disorder (OCD) is a psychiatric disorder with alterations of cortico-striato-thalamo-cortical loops and impaired performance monitoring. Electrophysiological markers such as conflict-related medial frontal theta (MFT) and error-related negativity (ERN) may be altered by clinically effective deep brain stimulation (DBS) of the anterior limb of the internal capsule and nucleus accumbens (ALIC/NAc). We hypothesized that ALIC/NAc DBS modulates electrophysiological performance monitoring markers. ⋯ ALIC/NAc DBS diminished MFT and ERN, demonstrating modulation of the medial frontal performance monitoring system in OCD. Furthermore, our findings encourage further studies to explore the ERN as a potential predictor for clinical efficacy.
-
Pallidal deep brain stimulation (DBS) for refractory Tourette syndrome (TS) is often applied using a high frequency. The effectiveness of low-frequency long-term stimulation is unknown. We aimed to evaluate the clinical efficacy of low-frequency DBS applied to the globus pallidus pars internus (GPi) at 65 Hz for the treatment of TS, with long-term follow-up, to provide data for the optimization of stimulation parameters. ⋯ The results of this study indicated that low-frequency DBS represents an effective and practical treatment for refractory TS with comparable efficacy to high-frequency DBS.
-
Our aim is to review several recent landmark studies discussing the application of advanced neuroimaging to guide target selection in deep brain stimulation (DBS) for psychiatric disorders. ⋯ Advanced neuroimaging techniques may be especially important to guide personalized DBS targeting in psychiatric disorders such as treatment-resistant depression and obsessive-compulsive disorder where symptom profiles and underlying disordered circuitry are more heterogeneous. These articles suggest that advanced imaging can help to further individualize and optimize DBS, a promising next step in improving its efficacy.
-
Neuromodulatory devices are increasingly used by neurosurgeons to manage a variety of chronic conditions. Given their potential benefits, it is imperative to create clear ethical guidelines for the use of these devices. We present a tiered ethical framework for neurosurgeon recommendations for the use of neuromodulatory devices. ⋯ Weighing risks and benefits of providing neuromodulatory devices and assessing ability to remain responsible for the devices on the level of the individual patient indicate which patients are most likely to achieve benefit from these devices. Consideration of these factors on an axis of resource allocation will allow for optimal provision of neuromodulatory devices to patients in settings of varied resources. Neurosurgeons play a primary role in promoting the effectiveness of these devices.
-
Review
Motor Cortex Stimulation for Pain: A Narrative Review of Indications, Techniques, and Outcomes.
Motor cortex stimulation (MCS) was introduced in 1985 and has been tested extensively for different types of peripheral and central neuropathic pain syndromes (eg, central poststroke pain, phantom limb pain, trigeminal neuropathic pain, migraines, etc). The motor cortex can be stimulated through different routes, including subdural, epidural, and transcranial. ⋯ Scientific evidence supports the use of MCS for treatment of refractory neuropathic pain syndromes. Further studies are warranted to elucidate the specific indications and stimulation protocols that are most amenable to the different types of MCS.