Neuromodulation : journal of the International Neuromodulation Society
-
The spinal cord injury (SCI) patient population is overwhelmingly affected by neuropathic pain (NP), a secondary condition for which therapeutic options are limited and have a low degree of efficacy. The objective of this study was to identify novel deep brain stimulation (DBS) targets that may theoretically benefit those with NP in the SCI patient population. We hypothesize that localized changes in white matter identified in SCI subjects with NP compared to those without NP could be used to develop an evidence-based approach to DBS target identification. ⋯ Altogether, we identified neuroarchitectural changes associated with NP in the SCI cohort and implemented a novel evidence-driven target selection approach for DBS to guide future research in neuromodulation treatment of NP after SCI.
-
The hippocampus is thought to be involved in movement, but its precise role in movement execution and inhibition has not been well studied. Previous work with direct neural recordings has found beta-band (13-30 Hz) modulation in both movement execution and inhibition throughout the motor system, but the role of beta-band modulation in the hippocampus during movement inhibition is not well understood. Here, we perform a Go/No-Go reaching task in ten patients with medically refractory epilepsy to study human hippocampal beta-power changes during movement. ⋯ These findings indicate that increases in hippocampal beta power are associated with movement inhibition. To the best of our knowledge, this study is the first to report this phenomenon in the human hippocampus. The beta band may represent a state-change signal involved in motor processing. Future focus on the beta band in understanding human motor and impulse control will be vital.
-
Obsessive-compulsive disorder (OCD) is a psychiatric disorder with alterations of cortico-striato-thalamo-cortical loops and impaired performance monitoring. Electrophysiological markers such as conflict-related medial frontal theta (MFT) and error-related negativity (ERN) may be altered by clinically effective deep brain stimulation (DBS) of the anterior limb of the internal capsule and nucleus accumbens (ALIC/NAc). We hypothesized that ALIC/NAc DBS modulates electrophysiological performance monitoring markers. ⋯ ALIC/NAc DBS diminished MFT and ERN, demonstrating modulation of the medial frontal performance monitoring system in OCD. Furthermore, our findings encourage further studies to explore the ERN as a potential predictor for clinical efficacy.
-
Although deep brain stimulation (DBS) is effective for treating a number of neurological and psychiatric indications, surgical and hardware-related adverse events (AEs) can occur that affect quality of life. This study aimed to give an overview of the nature and frequency of those AEs in our center and to describe the way they were managed. Furthermore, an attempt was made at identifying possible risk factors for AEs to inform possible future preventive measures. ⋯ Major AEs including intracranial surgery-related AEs or AEs requiring surgical removal or revision of hardware are rare. In particular, aggressive treatment is required in SSIs involving multiple sites or when Staphylococcus aureus is identified. For future benchmarking, the development of a uniform reporting system for surgical and hardware-related AEs in DBS surgery would be useful.
-
Pallidal deep brain stimulation (DBS) for refractory Tourette syndrome (TS) is often applied using a high frequency. The effectiveness of low-frequency long-term stimulation is unknown. We aimed to evaluate the clinical efficacy of low-frequency DBS applied to the globus pallidus pars internus (GPi) at 65 Hz for the treatment of TS, with long-term follow-up, to provide data for the optimization of stimulation parameters. ⋯ The results of this study indicated that low-frequency DBS represents an effective and practical treatment for refractory TS with comparable efficacy to high-frequency DBS.