Neuromodulation : journal of the International Neuromodulation Society
-
The objective of the study was to investigate transcranial wave propagation through two low-intensity focused ultrasound (LIFU)-based brain stimulation techniques-transcranial focused ultrasound stimulation (tFUS) and transcranial pulse stimulation (TPS). Although tFUS involves delivering long trains of acoustic pulses, the newly introduced TPS delivers ultrashort (∼3 μs) pulses repeated at 4 Hz. Accordingly, only a single simulation study with limited geometry currently exists for TPS. We considered a high-resolution three-dimensional (3D) whole human head model in addition to water bath simulations. We anticipate that the results of this study will help researchers investigating LIFU have a better understanding of the effects of the two different techniques. ⋯ This study simulated TPS administration using a 3D realistic image-derived data set. Although our comparison results are strictly limited to the model parameters and assumptions made, we were able to elucidate some clear differences between the two approaches. We hope this initial study will pave the way for systematic comparison between the two approaches in the future.
-
Randomized Controlled Trial
Combining Trauma Script Exposure With rTMS to Reduce Symptoms of Post-Traumatic Stress Disorder: Randomized Controlled Trial.
Innovative therapeutic interventions for post-traumatic stress disorder (PTSD) are required. We opted to facilitate fear extinction by combining trauma script exposure with repetitive transcranial magnetic stimulation (rTMS) to reduce symptoms of PTSD. ⋯ We found no evidence of difference in clinical improvement or remission rates between the 110% HF and 70% LF stimulation. These findings may reflect the importance of exposure procedure and that larger number of participants is needed.
-
Randomized Controlled Trial
Resting-State Network Changes Following Transcranial Magnetic Stimulation in Patients With Aphasia-A Randomized Controlled Study.
Although repetitive transcranial magnetic stimulation (rTMS) has exhibited promising efficacy in treating stroke-related aphasia, changes in neuroimaging in response to this therapy remain unclear. ⋯ The Clinicaltrials.gov registration number for the study is NCT03059225.
-
Short-interval intracortical inhibition (SICI) is a paired-pulse transcranial magnetic stimulation (TMS) technique that is commonly used to quantify intracortical inhibitory tone in the primary motor cortex. Whereas conventional measures of SICI (C-SICI) quantify inhibition by the amplitude of the motor evoked potential (MEP), alternative measures involving threshold tracked SICI (TT-SICI) instead record the TMS intensity required to maintain a consistent MEP amplitude. Although both C-SICI and TT-SICI are thought to reflect inhibition mediated by γ-aminobutyric acid type A (GABAA) receptors, recent evidence suggests that the mechanisms involved with each measure may not be equivalent. This study aimed to use combined TMS-electroencephalography (TMS-EEG) to investigate the cortical mechanisms contributing to C-SICI and TT-SICI. ⋯ Our findings further demonstrate that C-SICI and TT-SICI likely reflect different facets of GABAA-mediated processes, with inhibition produced by TT-SICI appearing to align more closely with TMS-EEG measures of cortical excitability.
-
The efficacy of repetitive transcranial magnetic stimulation (rTMS) in clinically relevant neuroplasticity research depends on the degree to which stimulation induces robust, reliable effects. The high degree of interindividual and intraindividual variability observed in response to rTMS protocols, such as continuous theta burst stimulation (cTBS), therefore represents an obstacle to its utilization as treatment for neurological disorders. Brain-derived neurotrophic factor (BDNF) is a protein involved in human synaptic and neural plasticity, and a common polymorphism in the BDNF gene (Val66Met) may influence the capacity for neuroplastic changes that underlie the effects of cTBS and other rTMS protocols. While evidence from healthy individuals suggests that Val66Met polymorphism carriers may show diminished or facilitative effects of rTMS compared to their homozygous Val66Val counterparts, this has yet to be demonstrated in the patient populations where neuromodulatory therapies are most relevant. ⋯ Our findings strongly suggest that BDNF genotype differentially affects neuroplastic responses to TMS in individuals with chronic stroke. This provides novel insight into potential sources of variability in cTBS response in patients, which has important implications for optimizing the utility of this neuromodulation approach. Incorporating BDNF polymorphism genetic screening to stratify patients prior to use of cTBS as a neuromodulatory technique in therapy or research may optimize response rates.