Neuromodulation : journal of the International Neuromodulation Society
-
Short-interval intracortical inhibition (SICI) is a paired-pulse transcranial magnetic stimulation (TMS) technique that is commonly used to quantify intracortical inhibitory tone in the primary motor cortex. Whereas conventional measures of SICI (C-SICI) quantify inhibition by the amplitude of the motor evoked potential (MEP), alternative measures involving threshold tracked SICI (TT-SICI) instead record the TMS intensity required to maintain a consistent MEP amplitude. Although both C-SICI and TT-SICI are thought to reflect inhibition mediated by γ-aminobutyric acid type A (GABAA) receptors, recent evidence suggests that the mechanisms involved with each measure may not be equivalent. This study aimed to use combined TMS-electroencephalography (TMS-EEG) to investigate the cortical mechanisms contributing to C-SICI and TT-SICI. ⋯ Our findings further demonstrate that C-SICI and TT-SICI likely reflect different facets of GABAA-mediated processes, with inhibition produced by TT-SICI appearing to align more closely with TMS-EEG measures of cortical excitability.
-
Review Case Reports
A Systematic Review of the Safety and Tolerability of Theta Burst Stimulation in Children and Adolescents.
Theta burst stimulation (TBS) is often used in clinical practice and research protocols for adults with neuropsychiatric disorders. There are substantial knowledge gaps related to the application of TBS in children and adolescents. This systematic review examined the safety and tolerability of TBS in children and adolescents. ⋯ TBS interventions in children may have similar safety, tolerability, and feasibility as compared to adults. However, long-term, follow-up studies of TBS are lacking. Future dose-ranging studies with systematic assessment of adverse events will be important in the translation of findings with TBS from adults to youth.
-
Randomized Controlled Trial
Analgesic Effects of Repetitive Transcranial Magnetic Stimulation at Different Stimulus Parameters for Neuropathic Pain: A Randomized Study.
The aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain. ⋯ The results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.
-
Randomized Controlled Trial
Five-Session Dual-Transcranial Direct Current Stimulation With Task-Specific Training Does Not Improve Gait and Lower Limb Performance Over Training Alone in Subacute Stroke: A Pilot Randomized Controlled Trial.
To determine the effect of five-session dual-transcranial direct current stimulation (dual-tDCS) combined with task-specific training on gait and lower limb motor performance in individuals with subacute stroke. ⋯ The combined intervention showed no benefit over training alone in improving gait variables and lower-limb performance. However, some performances were saturated at some point, as moderate to high function participants were recruited in the present study. Future studies should consider recruiting participants with more varied motor impairment levels and may need to determine the optimal stimulation protocols and parameters to improve gait and lower-limb performance.
-
Randomized Controlled Trial
A Randomized, Sham-Controlled Trial of Repetitive Transcranial Magnetic Stimulation Targeting M1 and S2 in Central Poststroke Pain: A Pilot Trial.
Central poststroke pain (CPSP), a neuropathic pain condition, is difficult to treat. Repetitive transcranial magnetic stimulation (rTMS) targeted to the primary motor cortex (M1) can alleviate the condition, but not all patients respond. We aimed to assess a promising alternative rTMS target, the secondary somatosensory cortex (S2), for CPSP treatment. ⋯ S2 is a promising nrTMS target in the treatment of CPSP. The DRD2 T/T genotype might be a biomarker for M1 nrTMS response, but this needs confirmation from a larger study.