Neuromodulation : journal of the International Neuromodulation Society
-
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an emerging form of adjunctive therapy in focal refractory epilepsy. Unlike conventional DBS targets, the ANT is both encapsulated by white matter layers and located immediately adjacent to the cerebrospinal fluid (CSF) space. Owing to the location of the ANT, implantation has most commonly been performed using a transventricular trajectory. Previous studies suggest different electrical conductivity between gray matter, white matter, and CSF. ⋯ Valuable information can be obtained from the noninvasive measurement of therapeutic impedances. The selection of active contacts to target stimulation to the anterior nucleus may be guided by therapeutic impedance measurements to optimize outcome.
-
Thalamic deep brain stimulation (DBS) is the primary surgical therapy for essential tremor (ET). Thalamic DBS traditionally uses an atlas-based targeting approach, which, although nominally accurate, may obscure individual anatomic differences from population norms. The objective of this study was to compare this traditional atlas-based approach with a novel quantitative modeling methodology grounded in individual tissue microstructure (N-of-1 approach). ⋯ Thalamic segmentation and VTA modeling based on individual tissue microstructure explain therapeutic stimulation equally well and side effects better than a traditional atlas-based method in DBS for ET. The N-of-1 approach may be useful in DBS targeting and programming, particularly when patient neuroanatomy deviates from population norms.
-
A market-released deep brain stimulation (DBS) lead and burr hole device (BHD) have been used for more than ten years to provide stable DBS therapy using leads with four equally distributed cylindrical electrodes along the distal lead length. Newer directional leads cluster segmented electrodes at the center of the electrode array. This work tests the hypothesis that improved chronic translational and rotational stability through enhanced BHD design may ensure that these newer directional electrodes remain in a stable orientation near the stimulation target to maintain therapy and maximize opportunities to adjust therapy, if needed. ⋯ These measurements quantitatively demonstrate that DBS system design can positively improve lead translational and rotational stability and show that system design is an important consideration for future product development.
-
Brain-computer interface (BCI)-controlled functional electrical stimulation (FES) has been used in rehabilitation for improving hand motor function. However, mechanisms of improvements are still not well understood. The objective of this study was to investigate how BCI-controlled FES affects hand muscle corticospinal excitability. ⋯ Our results demonstrated evidence that BCI-FES intervention could elicit muscle-specific short-term corticospinal excitability facilitation of the intervention targeted (ECR) muscle only, whereas randomly applied FES was ineffective in eliciting any changes. Notably, these findings suggest that associative cortical and peripheral activations during BCI-FES can effectively elicit targeted muscle corticospinal excitability facilitation, implying possible rehabilitation mechanisms.
-
Few studies have focused on subthalamic nucleus deep brain stimulation for refractory isolated dystonia, and the long-term outcomes are unclear. In this study, we evaluated the efficacy of subthalamic stimulation for generalized isolated dystonia for more than five years and explored the factors predicting clinical outcomes. ⋯ Our results indicate that subthalamic stimulation is effective and durable in treating generalized isolated dystonia. The subthalamic nucleus may be an alternative target for the treatment of refractory dystonia. Patients with less severe motor symptoms may benefit more from this treatment.