Neuromodulation : journal of the International Neuromodulation Society
-
The antiseizure effects of vagus nerve stimulation (VNS) are thought to be mediated by the modulation of afferent thalamocortical circuitry. Cross-frequency phase-amplitude coupling (PAC) is a mechanism of hierarchical network coordination across multiple spatiotemporal scales. In this study, we leverage local field potential (LFP) recordings from the centromedian (CM) (n = 3) and anterior (ATN) (n = 2) nuclei in five patients with tandem thalamic deep brain stimulation and VNS to study neurophysiological changes in the thalamus in response to VNS. ⋯ We report that VNS is associated with enhanced PAC and coordinated interhemispheric interactions within and between thalamic nuclei, respectively. These findings advance understanding of putative neurophysiological effects of acute VNS and contextualize previous animal and human studies showing distributed cortical synchronization after VNS.
-
This work aimed to study the effect of noninvasive vagus nerve stimulation on severe restless legs syndrome (RLS) resistant to pharmacotherapy. ⋯ In this pilot study, tVNS improved the symptoms of RLS in 66% of participants (10/15) with severe pharmacoresistant RLS, with concomitant improvements in quality of life and mood. Randomized controlled trials evaluating therapeutic efficacy of tVNS in RLS are needed to confirm these promising findings.
-
Chronic pain is primarily treated with pharmaceuticals, but the effects remain unsatisfactory. A promising alternative therapy is peripheral nerve stimulation (PNS), but it has been associated with suboptimal efficacy because its modulation mechanisms are not clear and the current therapies are primarily open loop (ie, manually adjusting the stimulation parameters). In this study, we developed a proof-of-concept computational modeling as the first step toward implementing closed-loop PNS in future biological studies. When developing new pain therapies, a useful pain biomarker is the wide-dynamic-range (WDR) neuron activity in the dorsal horn. In healthy animals, the WDR neuron activity occurs in a stereotyped manner; however, this response profile can vary widely after nerve injury to create a chronic pain condition. We hypothesized that if injury-induced changes of neuronal response can be normalized to resemble those of a healthy condition, the pathological aspects of pain may be treated while maintaining protective physiological nociception. ⋯ In this proof-of-concept study, we show how tractable, linear mathematical models of pain-related neurotransmission can be used to inform the development of closed-loop PNS. This new application of robust control to neurotechnology may also be expanded and applied across other neuromodulation applications.