Neuromodulation : journal of the International Neuromodulation Society
-
Currently, sacral neuromodulation (SNM) outcomes are often suboptimal, and changing stimulation parameters might improve SNM efficacy. Burst stimulation mimics physiological burst firing of the nervous system and might therefore benefit patients treated with SNM. The purpose of the present pilot study was to evaluate the effect of various Burst SNM paradigms on bladder and urethral pressure in patients with overactive bladder (OAB) or nonobstructive urinary retention (NOUR). ⋯ Burst SNM induces bladder contraction compared with Con-SNM and induces higher pressure increases in bladder and proximal urethra than does Con-SNM in patients with OAB or NOUR, indicating a higher degree of autonomic nervous system stimulation. The observed responses could not be fully explained by the total charge of the Burst SNM paradigms, which suggests the importance of individual Burst SNM parameters, such as frequency and amplitude. Future studies should assess the feasibility and efficacy of Burst SNM in awake patients.
-
Noninvasive neuromodulation, particularly through low-intensity ultrasound, holds promise in the fields of neuroscience and neuro-engineering. Ultrasound can stimulate the central nervous system to treat neurologic disorders of the brain and activate peripheral nerve activity. The aim of this study is to investigate the inhibitory effect of low-intensity ultrasonic tibial nerve stimulation on both the physiological state and the overactive bladder (OAB) model in rats. ⋯ This study confirmed the potential of transcutaneous ultrasound tibial nerve stimulation to improve bladder function. According to the findings, the ultrasonic intensities ranging from 1 to 3 W/cm2 and frequencies of 1 MHz and 3 MHz are both feasible and safe treatment parameters. This study portended the promise of low-intensity ultrasound tibial nerve stimulation as a treatment for OAB and provides a basis and reference for future clinical applications.
-
Sacral neuromodulation (SNM) has been shown to alleviate bladder dysfunction in patients with overactive bladder and nonobstructive urinary retention. However, the therapeutic effect and mechanism of SNM in neurogenic bladder dysfunction are still not fully understood. Using a rat model of spinal cord injury (SCI), this study aims to investigate the therapeutic effect of early SNM in the bladder-areflexia phase on neurogenic bladder dysfunction and evaluate its possible mechanism. ⋯ Early SNM prevented urothelial edema morphologically and detrusor overactivity in SCI rats. Inhibition of TRPV1 in the bladder and DRGs may be one of the potential mechanisms for preventing detrusor overactivity by SNM.