Journal of clinical monitoring and computing
-
To control the three components of general anesthesia (hypnosis, analgesia, and neuromuscular blockade), an automated closed-loop, anesthesia-drug delivery system (McSleepy) was developed. Bispectral index was used as the control variable for hypnosis, the analgoscore for analgesia, and phonomyography for neuromuscular blockade. McSleepy can be used to control the induction, maintenance and emergence from general anesthesia. ⋯ Preliminary results of 15 patients are presented in this paper. Evaluation of McSleepy was done through an assessment of its clinical performance and using Varvel's performance indices. The system was found to be clinically useful by providing good precision in drug administration and reliable results for the duration of a general anesthesia.
-
J Clin Monit Comput · Feb 2014
Bench test assessment of mainstream capnography during high frequency oscillatory ventilation.
To assess the feasibility, stability and predictability of pCO2 measurement (PETCO2) using a main stream capnograph in a high frequency oscillatory ventilation circuit. A commercially available capnograph was mounted into a high frequency oscillatory ventilator patient circuit, adjustable CO2 flow was introduced into an artificial lung and the output of the CO2 sensor assessed under varying ventilator settings. Influence of oxygen content, pressures, heat and moisture were recorded. ⋯ From this bench test, we conclude it is feasible to measure PETCO2 using a main stream capnograph during high frequency oscillatory conditions, these measurements were stable during the experiment. Changes in CO2 production or output can be detected. The system may prove to be of clinical value, but further in vivo measurements are warranted.
-
J Clin Monit Comput · Feb 2014
An enriched simulation environment for evaluation of closed-loop anesthesia.
To simulate and evaluate the administration of anesthetic agents in the clinical setting, many pharmacology models have been proposed and validated, which play important roles for in silico testing of closed-loop control methods. However, to the authors' best knowledge, there is no anesthesia simulator incorporating closed-loop feedback control of anesthetic agent administration freely available and accessible to the public. Consequently, many necessary but time consuming procedures, such as selecting models from the available literatures and establishing new simulator algorithms, will be repeated by different researchers who intend to explore a novel control algorithm for closed-loop anesthesia. ⋯ This simulator could be a benchmark-testing platform for closed-loop control of anesthesia, which is of great value and has significant development potential. For convenience, this simulator is termed as Wang's Simulator, which can be downloaded from http://www. AutomMed.org .