Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2015
A substitution method to improve completeness of events documentation in anesthesia records.
AIMS are optimized to find and display data and curves about one specific intervention but is not retrospective analysis on a huge volume of interventions. Such a system present two main limitation; (1) the transactional database architecture, (2) the completeness of documentation. In order to solve the architectural problem, data warehouses were developed to propose architecture suitable for analysis. ⋯ On the other hand, we increased by 21.1% the data completeness (from 80.3 to 97.2% of the total database) for the start and the end of anesthesia events. This method seems to be efficient to replace missing "start and end of anesthesia" events. This method could also be used to replace other missing time events in this particular data warehouse as well as in other kind of data warehouses.
-
J Clin Monit Comput · Dec 2015
Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients.
Early detection of hemorrhagic shock is required to facilitate prompt coordination of blood component therapy delivery to the bedside and to expedite performance of lifesaving interventions. Standard physical findings and vital signs are difficult to measure during the acute resuscitation stage, and these measures are often inaccurate until patients deteriorate to a state of decompensated shock. The aim of this study is to examine a severely injured trauma patient population to determine whether a noninvasive SpHb monitor can predict the need for urgent blood transfusion (universal donor or additional urgent blood transfusion) during the first 12 h of trauma patient resuscitation. ⋯ The results demonstrate that SpHb monitoring, accompanied by continuous vital signs data and adjusted for age and sex, has good accuracy for the prediction of need for transfusion; however, as an independent variable, SpHb did not enhance predictive models in comparison to use of features extracted from conventional pulse oximetry. Nor was shock index better than conventional oximetry at discriminating hemorrhaging and prediction of casualties receiving blood. In this population of trauma patients, noninvasive SpHb monitoring, including both trends and absolute values, did not enhance the ability to predict the need for blood transfusion.
-
J Clin Monit Comput · Dec 2015
Evaluation of near infrared spectroscopy for detecting the β blocker-induced decrease in cerebral oxygenation during hemodilution in a swine model.
β blockers reduce cerebral oxygenation after acute hemodilution and may contribute to the incidence of stroke when used perioperatively. The goal of the study was to investigate whether cerebral tissue oxygenation using near infrared spectroscopy can detect the β blocker-induced decrease in cerebral oxygenation depending on the severity of hemodilution and/or the dose of β blockers. Animals were anesthetized with 2% isoflurane and randomly assigned to a landiolol or esmolol group. ⋯ Landiolol at 40 µg/kg/min was almost equivalent in potency to 200 µg/kg/min esmolol for decreasing HR before hemodilution. Based on the TOI, short-acting β blockers reduced cerebral oxygenation in a dose-dependent manner during hemodilution, and oxygenation returned to the baseline level after drug infusion was stopped. TOI may be useful for identification of a decrease in cerebral oxygenation for patients receiving β blockade during surgery associated with major bleeding.
-
J Clin Monit Comput · Dec 2015
Controlled Clinical TrialContinuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study.
Continuous, noninvasive hemoglobin (SpHb) monitoring provides clinicians with the trending of changes in hemoglobin, which has the potential to alter red blood cell transfusion decision making. The objective of this study was to evaluate the impact of SpHb monitoring on blood transfusions in high blood loss surgery. In this prospective cohort study, eligible patients scheduled for neurosurgery were enrolled into either a Control Group or an intervention group (SpHb Group). ⋯ Compared to the Control Group, the SpHb Group had fewer units of blood transfused (1.0 vs 1.9 units for all patients; p ≤ 0.001, and 2.3 vs 3.9 units in patients receiving transfusions; p ≤ 0.0 l), fewer patients receiving >3 units (32 vs 73%; p ≤ 0.01) and a shorter time to transfusion after the need was established (9.2 ± 1.7 vs 50.2 ± 7.9 min; p ≤ 0.00 l). The absolute accuracy of SpHb was 0.0 ± 0.8 g/dL and trend accuracy yielded a coefficient of determination of 0.93. Adding SpHb monitoring to standard of care blood management resulted in decreased blood utilization in high blood loss neurosurgery, while facilitating earlier transfusions.