Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2015
Accuracy of continuous noninvasive hemoglobin monitoring for the prediction of blood transfusions in trauma patients.
Early detection of hemorrhagic shock is required to facilitate prompt coordination of blood component therapy delivery to the bedside and to expedite performance of lifesaving interventions. Standard physical findings and vital signs are difficult to measure during the acute resuscitation stage, and these measures are often inaccurate until patients deteriorate to a state of decompensated shock. The aim of this study is to examine a severely injured trauma patient population to determine whether a noninvasive SpHb monitor can predict the need for urgent blood transfusion (universal donor or additional urgent blood transfusion) during the first 12 h of trauma patient resuscitation. ⋯ The results demonstrate that SpHb monitoring, accompanied by continuous vital signs data and adjusted for age and sex, has good accuracy for the prediction of need for transfusion; however, as an independent variable, SpHb did not enhance predictive models in comparison to use of features extracted from conventional pulse oximetry. Nor was shock index better than conventional oximetry at discriminating hemorrhaging and prediction of casualties receiving blood. In this population of trauma patients, noninvasive SpHb monitoring, including both trends and absolute values, did not enhance the ability to predict the need for blood transfusion.
-
J Clin Monit Comput · Dec 2015
Controlled Clinical TrialContinuous and noninvasive hemoglobin monitoring reduces red blood cell transfusion during neurosurgery: a prospective cohort study.
Continuous, noninvasive hemoglobin (SpHb) monitoring provides clinicians with the trending of changes in hemoglobin, which has the potential to alter red blood cell transfusion decision making. The objective of this study was to evaluate the impact of SpHb monitoring on blood transfusions in high blood loss surgery. In this prospective cohort study, eligible patients scheduled for neurosurgery were enrolled into either a Control Group or an intervention group (SpHb Group). ⋯ Compared to the Control Group, the SpHb Group had fewer units of blood transfused (1.0 vs 1.9 units for all patients; p ≤ 0.001, and 2.3 vs 3.9 units in patients receiving transfusions; p ≤ 0.0 l), fewer patients receiving >3 units (32 vs 73%; p ≤ 0.01) and a shorter time to transfusion after the need was established (9.2 ± 1.7 vs 50.2 ± 7.9 min; p ≤ 0.00 l). The absolute accuracy of SpHb was 0.0 ± 0.8 g/dL and trend accuracy yielded a coefficient of determination of 0.93. Adding SpHb monitoring to standard of care blood management resulted in decreased blood utilization in high blood loss neurosurgery, while facilitating earlier transfusions.
-
J Clin Monit Comput · Dec 2015
Comparative StudyValidation of stroke volume and cardiac output by electrical interrogation of the brachial artery in normals: assessment of strengths, limitations, and sources of error.
The goal of this study is to validate a new, continuous, noninvasive stroke volume (SV) method, known as transbrachial electrical bioimpedance velocimetry (TBEV). TBEV SV was compared to SV obtained by cardiac magnetic resonance imaging (cMRI) in normal humans devoid of clinically apparent heart disease. Thirty-two (32) volunteers were enrolled in the study. ⋯ Bland-Altman analysis of averaged pre- and post-cMRI TBEV CO versus cMRI CO yielded a mean bias of 5.01% (0.32 L min(-1)), precision of 12.85% (0.77 L min(-1)), 95% LOA of +30.20 % (+0.1.83 L min(-1)) and -20.7% (-1.19 L min(-1)) and percent error = 24.8%. Regression analysis yielded y = 0.92x + 0.78, correlation coefficient r(2) = 0.74 (r = 0.86). TBEV is a novel, noninvasive method, which provides satisfactory estimates of SV and CO in normal humans.
-
J Clin Monit Comput · Dec 2015
Evaluation of near-infrared spectroscopy under apnea-dependent hypoxia in humans.
In this study we investigated the responsiveness of near-infrared spectroscopy (NIRS) recordings measuring regional cerebral tissue oxygenation (rSO2) during hypoxia in apneic divers. The goal was to mimic dynamic hypoxia as present during cardiopulmonary resuscitation, laryngospasm, airway obstruction, or the "cannot ventilate cannot intubate" situation. Ten experienced apneic divers performed maximal breath hold maneuvers under dry conditions. ⋯ Cerebral rSO2 measured re-saturation after termination of apnea significantly earlier (10 s, SD = 3.6 s) compared to SpO2 monitoring (21 s, SD = 4.4 s) [t(9) = 7.703, p < 0.001, r(2) = 0.868]. Our data demonstrate that NIRS monitoring reliably measures dynamic changes in cerebral tissue oxygen saturation, and identifies successful re-saturation faster than SpO2. Measuring cerebral rSO2 may prove beneficial in case of respiratory emergencies and during pulseless situations where SpO2 monitoring is impossible.
-
J Clin Monit Comput · Dec 2015
Effect of planecta and ROSE™ on the frequency characteristics of blood pressure-transducer kits.
Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE™, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and their frequency characteristics were tested with or without ROSE™. ⋯ Planecta ports decrease the natural frequency of the kit. ROSE™ is useful to optimise the frequency characteristics in the kits without or with one planecta port. However, optimisation is difficult with two or more planecta ports, even with the ROSE™ device.