Journal of clinical monitoring and computing
-
J Clin Monit Comput · Jun 2018
Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.
Adherence to low tidal volume (VT) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). ⋯ Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.
-
J Clin Monit Comput · Jun 2018
Correction to: Changes in transcranial motor evoked potentials during hemorrhage are associated with increased serum propofol concentrations.
In the original publication of the article, the corresponding author inadvertently omitted one of the co-authors in the author group. The corrected author group is given in this erratum.
-
J Clin Monit Comput · Jun 2018
Photoplethysmography for blood volumes and oxygenation changes during intermittent vascular occlusions.
Photoplethysmography (PPG) is an optical technique that measures blood volume variations. The main application of dual-wavelength PPG is pulse oximetry, in which the arterial oxygen saturation (SpO[Formula: see text]) is calculated noninvasively. However, the PPG waveform contains other significant physiological information that can be used in conjunction to SpO[Formula: see text] for the assessment of oxygenation and blood volumes changes. ⋯ A[Formula: see text] indicated significant changes for occlusion pressures exceeding 20 mmHg (p < 0.05) and correlation with tissue oxygenation changes measured by NIRS, while SpO[Formula: see text] had significant changes after 40 mmHg (p < 0.05). Relative changes in haemoglobin concentrations can be estimated from PPG signals and they showed a good level of accuracy in the detection of perfusion and oxygenation changes induced by different degrees of intermittent vascular occlusions. These results can open up to new applications of the PPG waveform in the detection of blood volumes and oxygenation changes.