Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2022
Validation of the Masimo O3™ regional oximetry device in pediatric patients undergoing cardiac surgery.
We assessed the accuracy of Masimo O3™ regional cerebral oxygen saturation (rSO2) readings by comparing them with reference values and evaluated the relationship between rSO2 and somatic tissue oxygen saturation (StO2) in children undergoing cardiac surgery. After anesthesia induction, pediatric sensors were applied to the forehead and foot sole, and rSO2 and StO2 values were monitored continuously. Before cardiopulmonary bypass (CPB), FIO2 was set to 0.2, 0.5, and 0.8 serially every 15 min. ⋯ According to multiple linear regression analysis, the application of CPB, FIO2, Hb level, and tip location of the central venous catheter influenced the bias (all P < 0.05). Furthermore, the correlation between rSO2 and StO2 was weak (r = 0.254). rSO2 readings by the Masimo O3™ device and pediatric sensor had good absolute and trending accuracies with respect to the calculated reference values in children undergoing cardiac surgery. rSO2 and StO2 cannot be used interchangeably. Clinical trial registration http://clinicaltrials.gov (number: NCT04208906).
-
J Clin Monit Comput · Dec 2022
Randomized Controlled TrialEvaluation of indigenously developed closed-loop automated blood pressure control system (claps): a preliminary study.
Closed-loop systems have been designed to assist anesthetists in controlling anesthetic drugs and also maintaining the stability of various physiological variables in the normal range. In the present study, we describe and clinically evaluated a novel closed-loop automated blood pressure control system (CLAPS) in patients undergoing cardiac surgery under cardiopulmonary bypass. Forty ASA II-IV adult patients undergoing elective cardiac surgery were randomly allocated to receive adrenaline, noradrenaline, phenylephrine and nitroglycerine (NTG) adjusted either through CLAPS (CLAPS group) or manually (Manual group). ⋯ The cardiac index and left ventricular end-diastolic area were comparable between the groups. Automated infusion of vasoactive drugs using CLAPS is feasible and also better than manual control for controlling hemodynamics during cardiac surgery. Trial registration number and date This trial was registered in the Clinical Trial Registry of India under Registration Number CTRI/2018/01/011487 (Retrospective; registration date; January 23, 2018).
-
J Clin Monit Comput · Dec 2022
Clinical TrialFeasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach.
To assess the feasibility of Transcranial Doppler ultrasonography (TCD) neuromonitoring in a general intensive care environment, in the prognosis and outcome prediction of patients who are in coma due to a variety of critical conditions. ⋯ Preliminary results from the trial indicate that multi-parameter TCD neuromonitoring increases outcome-predictive power and TCD-based indices can be applied to general intensive care monitoring.
-
J Clin Monit Comput · Dec 2022
Accuracy of calculating mechanical power of ventilation by one commonly used equation.
Gattinoni's equation, [Formula: see text], now commonly used to calculate the mechanical power (MP) of ventilation. However, it calculates only inspiratory MP. In addition, the inclusion of PEEP in Gattinoni's equation raises debate because PEEP does not produce net displacement or contribute to MP. ⋯ When the tidal volume used was 6 ml/Kg, the MP by Gattinoni's equation at PEEP 5 and 10 cmH2O were significantly different (4.51 vs 7.21 J/min, P < 0.001), but the MP by PV loop area was not influenced by PEEPs (6.46 vs 6.47 J/min, P = 0.331). Similar results were observed across all tidal volumes. We conclude that the Gattinoni's equation is not accurate in calculating the MP of a whole ventilatory cycle and is significantly influenced by PEEP, which theoretically does not contribute to MP.
-
J Clin Monit Comput · Dec 2022
Validity of transcranial Doppler ultrasonography-determined dynamic cerebral autoregulation estimated using transfer function analysis.
Transcranial Doppler ultrasonography (TCD) is used widely to evaluate dynamic cerebral autoregulation (dCA). However, the validity of TCD-determined dCA remains unknown because TCD is only capable of measuring blood velocity and thus only provides an index as opposed to true blood flow. To test the validity of TCD-determined dCA, in nine healthy subjects, dCA was evaluated by transfer function analysis (TFA) using cerebral blood flow (CBF) or TCD-measured cerebral blood velocity during a perturbation that induces reductions in TCD-determined dCA, lower body negative pressure (LBNP) at two different stages: LBNP - 15 mmHg and - 50 mmHg. ⋯ In addition, the ICA Q-determined TFA LF ngain from rest to LBNP50 was significantly correlated with TCD-determined TFA LF ngain (r = 0.460, P = 0.016) despite a low intraclass correlation coefficient. Moreover, in the Bland-Altman analysis, the difference in the TFA LF ngains determined by blood flow and velocity was within the margin of error, indicating that the two measurement methods can be interpreted as equivalent. These findings suggest that TCD-determined dCA can be representative of actual dCA evaluated with CBF.