Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2022
Ability of short-time low peep challenge to predict fluid responsiveness in mechanically ventilated patients in the intensive care.
Short-time low PEEP challenge (SLPC, application of additional 5 cmH2O PEEP to patients for 30 s) is a novel functional hemodynamic test presented in the literature. We hypothesized that SLPC could predict fluid responsiveness better than stroke volume variation (SVV) in mechanically ventilated intensive care patients. Heart rate, mean arterial pressure, stroke volume index (SVI) and SVV were recorded before SLPC, during SLPC and before and after 500 mL fluid loading. ⋯ The ROC-AUC of SVIΔ%-SLPC was significantly higher than that of SVV (p = 0.0045). The best cut-off value of SVIΔ%-SLPC was 7.5% with 90% sensitivity and 96% specificity. The percentage change in SVI during SLPC predicts fluid responsiveness in intensive care patients who are ventilated with low tidal volumes; the sensitivity and specificity values are higher than those of SVV.
-
J Clin Monit Comput · Aug 2022
Multicenter StudyPrediction of blood lactate values in critically ill patients: a retrospective multi-center cohort study.
Elevations in initially obtained serum lactate levels are strong predictors of mortality in critically ill patients. Identifying patients whose serum lactate levels are more likely to increase can alert physicians to intensify care and guide them in the frequency of tending the blood test. We investigate whether machine learning models can predict subsequent serum lactate changes. ⋯ The LSTM models were able to predict deterioration of serum lactate values of MIMIC-III patients with an AUC of 0.77 (95% CI 0.762-0.771) for the normal group, 0.77 (95% CI 0.768-0.772) for the mild group, and 0.85 (95% CI 0.840-0.851) for the severe group, with only a slightly lower performance in the external validation. The LSTM demonstrated good discrimination of patients who had deterioration in serum lactate levels. Clinical studies are needed to evaluate whether utilization of a clinical decision support tool based on these results could positively impact decision-making and patient outcomes.
-
J Clin Monit Comput · Aug 2022
Changes in corrected carotid flow time induced by recruitment maneuver predict fluid responsiveness in patients undergoing general anesthesia.
Non-invasive methods to assess patients' fluid responsiveness during lung-protective ventilation are needed. We hypothesized changes in the corrected carotid flow time induced by the recruitment maneuver predict fluid responsiveness under general anesthesia. Thirty patients undergoing general anesthesia in the supine position were prospectively enrolled. ⋯ The optimal threshold for changes in the corrected flow time was - 11.7% with a sensitivity of 95.0% (95% CI 75.1-99.9%) and a specificity of 80.0% (95% CI 44.4-97.5%). The gray-zone of changes in the corrected flow time was from - 25.1 to - 12.2% and included 12 patients (40%). Changes in the corrected carotid flow time were a useful, technically easy-to-perform, and non-invasive method to predict fluid responsiveness without a need for hemodynamic monitoring or arterial cannulation.
-
J Clin Monit Comput · Aug 2022
Correlation between brain tissue oxygen tension and regional cerebral oximetry in uninjured human brain under conditions of changing ventilation strategy.
Controversy surrounds regional cerebral oximetry (rSO2) because extracranial contamination and unmeasured changes in cerebral arterial:venous ratio confound readings. Correlation of rSO2 with brain tissue oxygen (PbrO2), a "gold standard" for cerebral oxygenation, could help resolve this controversy but PbrO2 measurement is highly invasive. This was a prospective cohort study. ⋯ From set point 1 to set point 2, PbrO2 increased from median 6.0, IQR 4.0-11.3 to median 22.5, IQR 9.8-43.6, p = 0.015; rSO2 increased from median 68.0, IQR 62.5-80.5 to median 83.0, IQR 74.0-90.0, p = 0.047. Correlation between PbrO2 and rSO2 is evident. Increasing FiO2 and PaCO2 results in significant increases in cerebral oxygenation measured by both monitors.