Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2024
Video plethysmography for contactless measurement of respiratory rate in surgical patients.
The accurate recording of respiratory rate (RR) without contact is important for patient care. The current methods for RR measurement such as capnography, pneumography, and plethysmography require patient contact, are cumbersome, or not accurate for widespread clinical use. Video Plethysmography (VPPG) is a novel automated technology that measures RR using a facial video without contact. ⋯ These results did not change with the ethnicity of patients. The success rate of the VPPG technology was 99.1%. Contactless RR monitoring of surgical patients at a hospital setting using VPPG is accurate and feasible, making this technology an attractive alternative to the current approaches to RR monitoring. Future developments should focus on improving reliability of the technology.
-
J Clin Monit Comput · Feb 2024
Agreement of zero-heat-flux thermometry with the oesophageal and tympanic core temperature measurement in patient receiving major surgery.
To identify and prevent perioperative hypothermia, most surgical patients require a non-invasive, accurate, convenient, and continuous core temperature method, especially for patients undergoing major surgery. This study validated the precision and accuracy of a cutaneous zero-heat-flux thermometer and its performance in detecting intraoperative hypothermia. Adults undergoing major non-cardiac surgeries with general anaesthesia were enrolled in the study. ⋯ Lin's concordance correlation coefficient was 0.90 (95%CI 0.89-0.92). The zero-heat-flux thermometry detected hypothermia with a sensitivity of 82% and a specificity of 90%. The zero-heat-flux thermometer is in good agreement with the reference core temperature based on tympanic and oesophagal temperature monitoring in patients undergoing major surgeries, and appears high performance in detecting hypothermia.
-
Develop a signal quality index (SQI) for the widely available peripheral venous pressure waveform (PVP). We focus on the quality of the cardiac component in PVP. We model PVP by the adaptive non-harmonic model. ⋯ An exterior validation of SQI achieves accuracy 0.87 and F1 0.92; an exterior validation of the SVM model achieves accuracy 0.95 and F1 0.96. The developed SQI has a convincing potential to help identify high quality PVP segments for further hemodynamic study. This is the first work aiming to quantify the signal quality of the widely applied PVP waveform.
-
J Clin Monit Comput · Feb 2024
Video plethysmography for contactless blood pressure and heart rate measurement in perioperative care.
The purpose of this study was to evaluate the feasibility and accuracy of remote Video Plethysmography (VPPG) for contactless measurements of blood pressure (BP) and heart rate (HR) in adult surgical patients in a hospital setting. An iPad Pro was used to record a 1.5-minute facial video of the participant's face and VPPG was used to extract vital signs measurements. A standard medical device (Welch Allyn) was used for comparison to measure BP and HR. ⋯ VPPG was highly accurate in measuring HR, and is currently not accurate in measuring BP in surgical patients. The VPPG BP algorithm showed limitations in capturing individual variations in blood pressure, highlighting the need for further improvements to render it clinically effective across all ranges. Contactless vital signs monitoring was well-received and earned a high satisfaction score.
-
J Clin Monit Comput · Feb 2024
The effects of respiratory rate and tidal volume on pulse pressure variation in healthy lungs-a generalized additive model approach may help overcome limitations.
Pulse pressure variation (PPV) is a well-established method for predicting fluid responsiveness in mechanically ventilated patients. The predictive accuracy is, however, disputed for ventilation with low tidal volume (VT) or low heart-rate-to-respiratory-rate ratio (HR/RR). We investigated the effects of VT and RR on PPV and on PPV's ability to predict fluid responsiveness. ⋯ We did not demonstrate any benefit of GAM-derived PPV in predicting fluid responsiveness. Trial registration: ClinicalTrials.gov, reg. March 6, 2020, NCT04298931.