Nature neuroscience
-
Nature neuroscience · Apr 2010
Comparative StudyA fast rod photoreceptor signaling pathway in the mammalian retina.
Rod photoreceptors were recently shown to contact 'Off' cone bipolar cells, providing an alternative pathway for rod signal flow in the mammalian retina. By recording from pairs of rods and Off cone bipolar cells in the ground squirrel (Spermophilus tridecemlineatus), we measured the synaptic responses of mammalian rods unfiltered by the slow kinetics of the rod bipolar cell response. We show that vesicle fusion and turnover in mammalian rods is fast, and that this new pathway can mediate rapid signaling.
-
Nature neuroscience · Apr 2010
Comparative StudyObservational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.
Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. ⋯ The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.
-
Nature neuroscience · Jan 2010
SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker.
Sleep is a whole-organism phenomenon accompanied by global changes in neural activity. We previously identified SLEEPLESS (SSS) as a glycosylphosphatidyl inositol-anchored protein required for sleep in Drosophila. Here we found that SSS is critical for regulating the sleep-modulating potassium channel Shaker. ⋯ Transgenic expression of sss in sss mutants rescued defects in Shaker expression and activity cell-autonomously and suggested that SSS functions in wake-promoting, cholinergic neurons. In heterologous cells, SSS accelerated the kinetics of Shaker currents and was co-immunoprecipitated with Shaker, suggesting that SSS modulates Shaker activity via a direct interaction. SSS is predicted to belong to the Ly-6/neurotoxin superfamily, suggesting a mechanism for regulation of neuronal excitability by endogenous toxin-like molecules.
-
Tonic pain has been difficult to demonstrate in animals. Because relief of pain is rewarding, analgesic agents that are not rewarding in the absence of pain should become rewarding only when there is ongoing pain. We used conditioned place preference to concomitantly determine the presence of tonic pain in rats and the efficacy of agents that relieve it. This provides a new approach for investigating tonic pain in animals and for evaluating the analgesic effects of drugs.
-
The thalamic reticular nucleus (TRN) is thought to function in the attentional searchlight. We analyzed the detection of deviant acoustic stimuli by TRN neurons and the consequences of deviance detection on the TRN target, the medial geniculate body (MGB) of the rat. TRN neurons responded more strongly to pure-tone stimuli presented as deviant stimuli (low appearance probability) than those presented as standard stimuli (high probability) (deviance-detection index = 0.321). ⋯ Both effects were neutralized by inactivation of the auditory TRN. Deviance modulation effects were cross-modal. Deviance detection probably causes TRN neurons to transiently deactivate surrounding TRN neurons in response to a fresh stimulus, altering auditory thalamus responses and inducing attention shift.