Nature neuroscience
-
Nature neuroscience · Nov 2015
Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.
Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. ⋯ Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.
-
Nature neuroscience · Jul 2015
Representation of retrieval confidence by single neurons in the human medial temporal lobe.
Memory-based decisions are often accompanied by an assessment of choice certainty, but the mechanisms of such confidence judgments remain unknown. We studied the response of 1,065 individual neurons in the human hippocampus and amygdala while neurosurgical patients made memory retrieval decisions together with a confidence judgment. Combining behavioral, neuronal and computational analysis, we identified a population of memory-selective (MS) neurons whose activity signaled stimulus familiarity and confidence, as assessed by subjective report. ⋯ The information provided by MS neurons was sufficient for a race model to decide stimulus familiarity and retrieval confidence. Together, our results indicate a trial-by-trial relationship between a specific group of neurons and declared memory strength in humans. We suggest that VS and MS neurons are a substrate for declarative memories.
-
Nature neuroscience · Apr 2015
The dorsal posterior insula subserves a fundamental role in human pain.
Several brain regions have been implicated in human painful experiences, but none have been proven to be specific to pain. We exploited arterial spin-labeling quantitative perfusion imaging and a newly developed procedure to identify a specific role for the dorsal posterior insula (dpIns) in pain. Tract tracing studies in animals identify a similar region as fundamental to nociception, which suggests the dpIns is its human homolog and, as such, a potential therapeutic target.