International journal of molecular medicine
-
Colon cancer is one of the most common and lethal malignancies worldwide. Despite major advances in the treatment of colon cancer, the prognosis remains very poor. Thus, novel and effective therapies for colon cancer are urgently needed. ⋯ The downregulation of miR-218 activated the PI3K/Akt/mTOR signaling pathway and promoted MMP9 expression. Taken together, our results demonstrate that miR-218 suppresses the proliferation, migration and invasion of LoVo colon cancer cells by targeting the PI3K/Akt/mTOR signaling pathway and MMP9. Our data indicate that miR-218 is a potential target in the treatment of colon cancer.
-
Endoplasmic reticulum (ER) stress and inflammation induced by obesity lead to adipocyte dysfunction, with the impairment of the insulin pathway. Recent studies have indicated that understanding the physiological role of autophagy is of great significance. In the present study, an in vitro model was used in which 3T3-L1 adipocytes were pre-loaded with palmitate (PA) to generate artificially hypertrophied mature adipocytes. ⋯ In conclusion, our data indicate that PA elicits a ER stress-JNK-autophagy axis, and that this confers a pro-survival effect against PA-induced cell death and stress in hypertrophied adipocytes. The JNK-dependent activation of autophagy diminishes PA-induced inflammation. Therefore, the stimulation of autophagy may become a method with which to attenuate adipocyte dysfunction and inflammation.
-
Acute myeloid leukemia (AML) is the second-most common form of leukemia in children. Aberrant DNA methylation patterns are characteristic of AML. Zinc finger protein 382 (ZNF382) has been suggested to be a tumor suppressor gene possibly regulated by promoter hypermethylation in various types of human cancer. ⋯ The epigenetic inactivation of ZNF382 by promoter hypermethylation can be observed in AML cell lines and pediatric AML samples. Therefore, our study suggests that ZNF382 may be considered a putative tumor suppressor gene in pediatric AML. However, further studies focusing on the mechanisms responsible for ZNF382 downregulation in pediatric leukemia are required.
-
Intestinal barrier dysfunction occurs in critical illnesses and involves the inflammatory and hypoxic injury of intestinal epithelial cells. Researchers are still defining the underlying mechanisms and evaluating therapeutic strategies for restoring intestinal barrier function. The anti-inflammatory drug, emodin, has been shown to exert a protective effect on intestinal barrier function; however, its mechanisms of action remain unknown. ⋯ The results revealed that emodin markedly attenuated the decrease in transepithelial electrical resistance and the increase in paracellular permeability in the Caco-2 monolayers treated with LPS and subjected to HR. Emodin also markedly alleviated the damage caused by LPS and HR (manifested by a decrease in the expression of the TJ protein, ZO-1), and inhibited the expression of HIF-1α, IκB-α, NF-κB and COX-2 in a dose-dependent manner. In conclusion, our data suggest that emodin attenuates LPS- and HR-induced intestinal epithelial barrier dysfunction by inhibiting the HIF-1α and NF-κB signaling pathways and preventing the damage caused to the TJ barrier (shown by the decrease in the expression of ZO-1).
-
The disruption of the blood-brain barrier (BBB) caused by cerebral ischemia determines the extent of injury and patient prognosis. Inhibitors of Src can markedly minimize the infarct size and preserve neurological function. The Src protein tyrosine kinase (PTK) inhibitor, PP2, protects the rat brain against ischemic injury, possibly through the reduction of vascular endothelial growth factor A (VEGFA) expression and the upregulation of claudin-5 expression, which preserves the integrity of the BBB. ⋯ Furthermore, the reduced co-localization of immunostaining of glial fibrillary acidic protein (GFAP) and claudin-5 indicated that the rats in the PP2 group had only a slight disruption of the BBB. These findings suggested that PP2 treatment attenuated the disruption of the BBB following ischemia and minimized the neurological deficit; these effects were associated with a decreased VEGFA expression and an increased claudin-5 expression. Members of the Src PTK family may be critical targets for the protection of the BBB following cerebral ischemia.