International journal of molecular medicine
-
Intervertebral disc degeneration (IDD) is associated with lower back pain and is a global burden with severe healthcare and socioeconomic consequences. However, the underlying mechanisms of IDD remain largely unelucidated. Accumulating evidence has indicasted that newly defined gene regulators, microRNAs (miRNAs), play a vital role in neurodegenerative, pathophysiological and certain reproductive disorders. ⋯ Our results demonstrated that the miRNA expression in patients with IDD differed significantly from that in patients who sustained injury to the intervertebral disc. Our data indicate that the dysregulated miRNAs control the signaling pathways important for the maintenance of IDD. Further studies on miRNA target gene identification and biological functions may address the specific regulatory mechanisms of miRNAs in IDD, and may provide valuable insight into the diagnosis and treatment of IDD.
-
Acute kidney injury (AKI) is a common syndrome with a high mortality and morbidity rate. Recent developments in stem cell research have shown great promise for the treatment of AKI. The aim of this study was to investigate the therapeutic potential and anti-apoptotic mechanisms of action of bone marrow-derived mesenchymal stem cells (BM-MSCs) in the treatment of AKI induced by cisplatin in vivo and in vitro. ⋯ In conclusion, our results demonstrate that injecting rats with BM-MSCs protects renal function and structure in cisplatin-induced AKI by inhibiting cell apoptosis in vivo. BM-MSC-conditioned medium protects renal cells from apoptosis induced by cisplatin in vitro. Hence, the infusion of BM-MSCs should be considered as a possible therapeutic strategy for the treatment of AKI.
-
The two most common forms of chronic pain are inflammatory pain and neuropathic pain. Nevertheless, the underlying mechanisms of these pain conditions and their therapeutic responses are poorly understood. MicroRNAs (miRNAs) negatively regulate cell genes, and thus control cell proliferation, inflammation and metabolism. ⋯ An unsupervised cluster analysis produced separate clusters between the control and experimental groups. In this study, we demonstrate the differential expression of hippocampal miRNAs in two rat models of chronic pain; however, no significant differences were observed bilaterally in hippocampal miRNA expression. Further research is required to determine the correlation among miRNAs, messenger RNAs (mRNAs) and proteins.
-
Intestinal ischemia/reperfusion (I/R) injury is a serious condition in intensive care patients, resulting in severe inflammation and remote organ damage. The activation of the mammalian target of rapamycin (mTOR)/p70 ribosomal S6 kinase (p70S6K) signaling pathway exerts protective effect against ischemia/reperfusion injury. Ghrelin, an orexigenic hormone, inhibits the release of pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor-α and IL-6. ⋯ To determine whether the beneficial effects of ghrelin following gut I/R injury are associated with the mTOR/p70S6K signaling pathway, the phosphorylation levels of mTOR and p70S6K were detected by western blot analysis. Our results revealed that mTOR and p70S6K phosphorylation increased in the tissue from the small intestine and pulmonary tissue in the animals treated with ghrelin. These findings suggest that ghrelin attenuates organ injury following gut I/R by promoting the activation of the mTOR/p70S6K signaling pathway.
-
The enhancement of endogenous neurogenesis has been suggested in the treatment of traumatic brain injury (TBI); however, the factors that trigger the process of adult neurogenesis following TBI remain elusive. In the adult mammalian central nervous system, there are 2 neurogenic regions: the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles, both of which maintain relatively quiescent states in a stable microenvironment. However, once stimulated by intrinsic and extrinsic events, relevant signals are activated in these 2 regions. ⋯ In addition, the number of survivin (+) cells, as well as that of BrdU (+) cells increased in the SGZ of the dentate gyrus (DG) in the hippocampus following TBI, as shown by immunofluorescence double staining; the co-localization of survivin and BrdU was shown in the merged images. The expression of survivin was also significantly increased in the doublecortin (DCX) (+) immature neurons in the DG of the hippocampus soon after the induction of TBI. Taken together, these data confirm the connection between the expression of survivin and adult neurogenesis following TBI; our data also suggest the therapeutic potential of upregulating survivin expression as a novel strategy for the effective treatment of TBI.