International journal of molecular medicine
-
Oxidative stress and neuroinflammation are important in the pathogenesis of ageing and age‑related neurodegenerative diseases, including Alzheimer's disease. NADPH oxidase 2 (NOX2) is a major source of reactive oxygen species (ROS) in the brain. The nucleotide‑binding oligomerisation domain (NOD)‑like receptor protein 1 (NLRP1) inflammasome is responsible for the formation of pro‑inflammatory molecules in neurons. ⋯ Rg1 decreased ROS production, reducing the expression of NOX2 and the NLRP1 inflammasome in H2O2‑treated hippocampal neurons. Furthermore, Rg1 and tempol treatment significantly decreased neuronal apoptosis and the expression of β‑galactosidase, and alleviated the neuronal senescence and damage induced by H2O2. The present study indicates that Rg1 may reduce NOX2‑mediated ROS generation, inhibit NLRP1 inflammasome activation, and inhibit neuronal senescence and damage.
-
In the present study, a highly efficient method, referred to as optimized ultrafiltration (OUF), was developed. This method is effective for exosome purification and also facilitates clinical work involving substantial urinary exosome isolation. In the OUF method, 0.22‑µm filters along with a dialysis membrane with a molecular weight cut‑off of 10,000 kDa were introduced, in order to remove extracellular microvesicles that were >200 nm and concentrate the supernatant up to 1/50 of the initial volume. ⋯ In addition, colloidal Coomassie‑stained gel and reverse transcription‑quantitative polymerase chain reaction were used to investigate the stability and integrity of exosomes isolated by these two protocols. The time required and cost of these two methods in the process of isolating urinary exosomes were also estimated. The results indicated that OUF clearly outperforms UC in quantity, quality and biological stability, and this improved method may have extensive applications in the growing fields of clinical biomarker discovery and exosome research.
-
The mechanism underlying sepsis‑induced cardiomyopathy (SICM) remains unclear. The aim of the present study was therefore to illuminate the mechanisms and effects of apelin on SICM, using both patient clinical features and a sepsis rat model. A total of 73 adult patients with or without sepsis were analyzed. ⋯ ELISA analyses revealed that apelin was upregulated following sepsis. The animal model study demonstrated that rats treated with apelin had significantly reduced mortality and suppressed sepsis‑induced myocardial damage and inflammatory responses, through suppression of activation of the Toll‑like receptor 4 (TLR4) and NLR family pyrin domain containing 3 (NLRP3) signaling pathways. Taken together, the present results suggested that apelin had a protective effect against sepsis‑induced cardiac impairment by attenuating TLR4 and NLRP3 signaling‑mediated inflammatory responses.
-
Alkali burn is one of the main causes of corneal injury. The inflammation and neovascularization caused by alkali burns aggravate corneal damage, resulting in loss of vision. The aim of the present study was to evaluate the efficacy of xanthatin in the treatment of alkali burn‑induced inflammation and neovascularization. ⋯ In the VEGF‑treated HUVECs, xanthatin significantly decreased the expression levels of p‑VEGFR2, phosphorylated (p‑)STAT3, p‑PI3K and p‑Akt. In conclusion, the present study confirmed that xanthatin inhibited corneal neovascularization and inflammation in the alkali burn model, elucidating the underlying mechanisms involved in its protective effects. Therefore, xanthatin may be a novel drug for the treatment of corneal alkali burn.
-
Epithelial-mesenchymal transition (EMT) is a critical step and key factor during renal fibrosis. Preventing renal tubular EMT is important for delaying the progression of chronic kidney disease (CKD). P311, a highly conserved 8-kDa intracellular protein, has been indicated as an important factor in myofibroblast transformation and in the progression of fibrosis. ⋯ Furthermore, P311 attenuated TGF-β1-mediated EMT through Smad-ILK signaling pathway with an increase in α-SMA, pSmad2/3 and ILK expression, and a decrease in E-cadherin and Smad7 expression in UUO kidneys. In conclusion, P311 may be involved in the pathogenesis of renal fibrosis by blocking TGF-β1-mediated EMT via TGF-β1-Smad-ILK pathway in UUO kidneys. P311 may be a novel target for the control of renal fibrosis and the progression of CKD.