International journal of molecular medicine
-
Hydrogen sulfide (H2S) has been proposed to exert pro- as well as anti-inflammatory effects in various models of critical illness. In this study, we compared bacterial lipopolysaccharide (LPS)‑induced changes in inflammatory mediator production, indices of multiple organ injury and survival in wild‑type (WT) mice and in mice with reduced expression of one of the three H2S‑producing enzymes, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS) or 3-mercaptopyruvate sulfurtransferase (3MST). Mice were injected intraperitoneally (i.p.) with LPS (10 mg/kg). ⋯ LPS induced significant increases in the plasma levels of multiple cytokines [tumor necrosis factor (TNF)α, interleukin (IL)‑1β, IL‑6, IL‑10, IL‑12 and interferon (IFN)γ] in plasma; TNFα, IL‑10 and IL‑12 levels tended to be lower in all three groups of animals expressing lower levels of H2S‑producing enzymes. The survival rates after the LPS challenge did not show any significant differences between the four animal groups tested. Thus, the findings of this study indicate that a deficiency in 3MST does not significantly affect endotoxemia, while a deficiency in CBS or CSE slightly ameliorates the outcome of LPS-induced endotoxemia in vivo.
-
Bone cancer pain (BCP) is one of the most difficult and intractable tasks for pain management, which is associated with spinal 'neuron-astrocytic' activation. The activation of the c-Jun N-terminal kinase (JNK)/chemokine (C-C motif) ligand (CCL2) signaling pathway has been reported to be critical for neuropathic pain. Rolipram (ROL), a selective phosphodiesterase 4 inhibitor, possesses potent anti-inflammatory and anti-nociceptive activities. ⋯ The JNK inhibitor, SP600125, decreased CCL2 expression and attenuated pain behavior. Following co-treatment with ROL and SP600125, no significant increases in thermal hyperalgesia and CCL2 expression were observed compared with the ROL group. Thus, our findings suggest that the analgesic effects of ROL in BCP are mainly mediated through the inhibition of 'neuron‑astrocytic' activation, which occurs via the suppression of spinal JNK/CCL2 signaling.
-
The kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling axis plays an important role in regulating oxidative stress in ischemic cardiomyocytes. Targeting Keap1 in order to promote Nrf2 activation is considered a potential method for protecting cardiomyocytes against ischemic injury. In recent years, microRNAs (miRNAs or miRs) have emerged as powerful tools for controlling gene expression. ⋯ The inhibition of miR-200a displayed the opposite effects. Restoring the expression of Keap1 significantly abrogated the protective effect of miR‑200a. Taken together, these findings indicate that the suppression of Keap1 by miR-200a exerted a cardioprotective effect against hypoxia-induced oxidative stress and cell apoptosis, and suggest that the activation of Nrf2 signaling by miR‑200a represents a novel and promising therapeutic strategy for the treatment of ischemic heart disease.
-
The volatile anaesthetic isoflurane is one of the most frequently employed general anaesthetics in neonates, children and adults. Accumulating evidence demonstrated that exposure to anaesthetics is associated with widespread neurodegeneration and cognitive impairment. Thus, the identification and development of compounds capable of preventing or reducing these adverse effects is of great clinical importance. ⋯ Furthermore, naringenin increased the expression of Bcl-xL and Bcl-2 and activated the PI3K/Akt pathway. Significant improvements in learning capacity and memory retention were observed following naringenin treatment. Naringenin effectively ameliorated cognitive dysfunction and reduced isoflurane‑induced apoptosis as well as modulating the PI3/Akt/PTEN and NF-κB signalling pathways.
-
Cerebral ischemic injury and treatment are important topics in neurological science. In the present study, an in vitro model of cerebral ischemia was established by subjecting primary cultures of hippocampal neuronal cells to oxygen-glucose deprivation followed by reperfusion (OGD/R), in order to evaluate the possible neuroprotective role of syringic acid (SA). The results of 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays showed that pre-treatment with SA (0.1, 1, 10, and 20 µM) attenuated OGD/R-induced neuronal injury in a dose-dependent manner, with evidence of increased cell viability and decreased LDH leakage. ⋯ Western blot analysis revealed that OGD/R promoted cell apoptosis with concomitant increases in Bax and caspase-3 expression, and reduced Bcl-2 expression, which was reversed by pre‑treatment with SA in a dose-dependent manner. Moreover, these effects were mediated through the JNK and p38 pathways, as pre‑treatment with SA inhibited the OGD/R-induced increase in phosphorylated (p-)JNK and p-p38 expression. Taken together, these results suggested that SA exerted strong neuroprotective effects in hippocampal neuronal cells, which may be attributed to the attenuation of OGD/R-induced cell injury through the JNK and p38 signaling pathways.