Journal of Alzheimer's disease : JAD
-
The structural integrity of the cerebral white matter, including that of the white matter lesions (WML) and of the surrounding normal appearing white matter (NAWM), can be assessed with diffusion tensor imaging (DTI), which is suggested to be of added value in the explanation of cognitive dysfunction in cerebral small vessel disease (SVD). We investigated the value of DTI of NAWM and WML in addition to conventional magnetic resonance imaging (MRI) parameters in the variance of cognitive performance in subjects with SVD. 499 individuals with SVD, 50-85 years, without dementia, underwent MRI scanning, including a DTI sequence. Grey matter, white matter (WM), and WML volume, number of microbleeds, lacunar and territorial infracts, and mean diffusivity (MD) and fractional anisotropy (FA) in NAWM, WML, and total WM were related to cognitive performance in multivariate regression analyses, after adjustment for age, gender, and education. ⋯ Both mean MD and FA of the NAWM, WML, and total WM did not substantially contribute to the explained variance of cognitive function, to that already explained by conventional MRI parameters. When considered separately, the MD of the (NA)WM had the strongest association with cognitive performance. In conclusion, DTI of NAWM and WML has limited additional value to conventional MRI parameters in the etiological explanation of the variance in cognitive function among individuals with SVD.
-
COMT (Catechol-O methyltransferase) gene is one of the key players in synaptic plasticity and in learning and memory mechanisms. A single nucleotide polymorphism (rs4680; G to A) in the COMT coding region causes Val158Met aminoacid substitution in the corresponding protein, with Val allele exhibiting a 3- to 4-fold increase in enzyme activity compared to Met. With the purpose of examining the influence of COMT as a genetic risk factor for cognitive impairment, we analyzed a sample of 248 healthy subjects, 276 patients affected by Alzheimer's disease (AD), and 70 subjects with mild cognitive impairment (MCI), the latter condition possibly representing a prodrome for dementia. ⋯ However, we found an association between COMT GG genotype (Val/Val) and APOE ε4 carrier status and the risk of AD and MCI. In particular, when GG genotype is included into the multinomial analysis, the risk of AD and MCI due to APOE ε4 allele is increased of about 2-3 fold; moreover, the risk conferred by the combination of G and ε4 alleles is more pronounced in male patients. To our knowledge, this synergistic effect is here shown for the first time on a population sample representative of Caucasian patients.
-
Progranulin gene (GRN) mutations cause frontotemporal lobar degeneration (FTLD) with TDP43-positive inclusions, although its clinical phenotype is heterogeneous and includes patients classified as behavioral variant-FTLD (bvFTLD), progressive non-fluent aphasia (PNFA), corticobasal syndrome, Alzheimer's disease (AD), or Parkinson's disease (PD). Our main objective was to study if low serum progranulin protein (PGRN) levels may detect GRN mutations in a Spanish cohort of patients with FTLD or AD. Serum PGRN levels were measured in 112 subjects: 17 bvFTLD, 20 PNFA, 4 semantic dementia, 34 sporadic AD, 9 AD-PSEN1 mutation carriers, 10 presymptomatic-PSEN1 mutation carriers, and 18 control individuals. ⋯ Null GRN mutation carriers also showed lower serum PGRN levels than the patient who was a carrier of p. C139R (92.3 ng/mL) and the one who was a carrier of the PRNP mutation (76.9 ng/mL). In conclusion, we detected GRN null mutations in patients with severely reduced serum PGRN levels, but not in patients with slightly reduced PGRN levels.
-
Sporadic Alzheimer's disease (AD) patients have low amyloid-β peptide (Aβ) clearance in the central nervous system. The peripheral Aβ clearance may also be important but its role in AD remains unclear. We aimed to study the Aβ degrading proteases including insulin degrading enzyme (IDE), angiotensin converting enzyme (ACE) and others in blood. ⋯ The elderly with probable AD had lower serum substrate V degradation activity compared with those who had vascular dementia. The blood proteases mediating Aβ degradation may be important for the AD pathogenesis. More studies are needed to specify each Aβ degrading protease in blood as a useful biomarker and a possible treatment target for AD.
-
The measurement of hippocampal volumes using MRI is a useful in-vivo biomarker for detection and monitoring of early Alzheimer's disease (AD), including during the amnestic mild cognitive impairment (a-MCI) stage. The pathology underlying AD has regionally selective effects within the hippocampus. As such, we predict that hippocampal subfields are more sensitive in discriminating prodromal AD (i.e., a-MCI) from cognitively normal controls than whole hippocampal volumes, and attempt to demonstrate this using a semi-automatic method that can accurately segment hippocampal subfields. ⋯ Whole hippocampal volumes significantly differed bilaterally (left: p = 0.028, right: p = 0.009). This pattern of atrophy in a-MCI is consistent with the topography of AD pathology observed in postmortem studies, and corrected left CA1 provided stronger discrimination than whole hippocampal volume (p = 0.03). These results suggest that semi-automatic segmentation of hippocampal subfields is efficient and may provide additional sensitivity beyond whole hippocampal volumes.