Journal of Alzheimer's disease : JAD
-
TREM2 has been reported to be associated with Alzheimer's disease (AD). Here, we evaluated TREM2 mRNA and protein expressions in peripheral blood from AD patients and healthy controls. ⋯ According to ROC curve analysis, the diagnostic accuracy for TREM2 protein levels on monocytes was 70%, with the sensitivity and specificity 68% and 72%, respectively. Our results indicate that TREM2 might serve as a novel noninvasive biomarker for AD diagnosis.
-
Scales of global cognition and behavior, often used as endpoints for intervention trials in Alzheimer's disease (AD) and mild cognitive impairment (MCI), are insufficiently responsive (i.e., relatively insensitive to change). Large patient samples are needed to detect beneficial drug effects. Therefore, magnetic resonance imaging (MRI) measures of cerebral atrophy have been proposed as surrogate endpoints. ⋯ Neuropsychological assessment is more responsive than MRI measures of brain atrophy for detecting disease progression in memory clinic patients with MCI or AD.
-
Cerebral hypometabolism of glucose, weight loss, and decreased food intake are characteristic features of sporadic Alzheimer's disease (AD). A systematic study on the serum levels of adipokines and insulin, the major hormones regulating energy metabolism, food intake, and body weight, in sporadic AD is necessary. The present study compares the serum levels of leptin, adiponectin, and insulin, measured by commercially available immuno-assay kits, between controls and sporadic AD subjects. ⋯ The changes in the serum levels of adiponectin and insulin in AD are positively correlated with the severity of dementia. Likewise, the serum level of leptin in AD subjects is negatively correlated with the degree of dementia. The changes in the levels of adipokines and insulin have implications in the amyloid pathology, neurodegeneration, and hypometabolism of glucose existing in the AD brain.
-
Rosiglitazone has been known to attenuate neurodegeneration in Alzheimer's disease (AD), but the underlying mechanisms remain to be fully elucidated. In this study, living-cell image, immunocytochemistry, and electrophysiology were used to examine the effects of soluble amyloid-β protein (Aβ) oligomers and rosiglitazone on the synapse formation, plasticity, and mitochondrial distribution in cultured neurons. Incubation of hippocampal cultures with amyloid-β (Aβ)42 oligomers (0.5 μM) for 3 h significantly decreased dendritic filopodium and synapse density. ⋯ In conclusion, our data suggested that rosiglitazone prevents Aβ42 oligomers-induced impairment via increasing mitochondrial numbers in the dendrite and spine, improving synapse formation and plasticity. This process is most likely through the PPARγ-dependent pathway and in concentration and time dependent manners. The study provides novel insights into the mechanisms for the protective effects of rosiglitzone on AD.
-
Alzheimer's disease (AD) is an age-related neurological disorder characterized by the deposition of amyloid-β (Aβ), cognitive deficits, and neuronal loss. The decline in neurogenic capacity could participate in neuronal vulnerability and contribute to memory impairment in AD. In our longitudinal study with AD model mice (5XFAD mice), we found that the number of doublecortin (neurogenesis marker)-positive cells in 5XFAD mice was significantly decreased compared to wild-type littermate mice. ⋯ We found that treatment with ghrelin increased the number of doublecortin, HH3, and calretinin-stained cells in the hippocampus of 5XFAD mice. In 5XFAD mice treated with ghrelin, the 4G8-positive area was not significantly different from the saline-treated 5XFAD mice. Together, these findings suggest that hippocampal neurogenesis is impaired in 5XFAD mice and that treatment with ghrelin successfully rescued the abnormality of neurogenesis in 5XFAD mice without affecting Aβ pathology.