Journal of Alzheimer's disease : JAD
-
Case Reports
Alzheimer's Disease FDG PET Imaging Pattern in an Amyloid-Negative Mild Cognitive Impairment Subject.
The revised NIA-AA diagnostic criteria for Alzheimer's disease (AD) and mild cognitive impairment (MCI) due to AD make use of amyloid pathology and neurodegeneration biomarkers which increase the diagnostic confidence in the majority of patients. However, in daily praxis, cases with conflicting biomarker constellations occur. ⋯ In this subject, the biomarkers of Aβ deposition were negative. [18F]FDG PET, however, showed an AD-typical hypometabolism. Further studies are required to determine frequency and relevance of cases with neurodegeneration-first biomarker constellations to improve our understanding on pathogenesis and diagnosis of AD.
-
The purpose of this explorative study was to investigate whether diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) parameter changes are reliable measures of white matter integrity changes in Alzheimer's disease (AD) patients using a whole brain voxel-based analysis (VBA). Therefore, age- and gender-matched patients with mild cognitive impairment (MCI) due to AD (n = 18), dementia due to AD (n = 19), and age-matched cognitively healthy controls (n = 14) were prospectively included. The magnetic resonance imaging protocol included routine structural brain imaging and DKI. ⋯ Groups were compared using VBA. Differences in diffusion and mean kurtosis measures between MCI and AD patients and controls were shown, and were mainly found in the splenium of the corpus callosum and the corona radiata. Hence, DTI and DKI parameter changes are suggestive of white matter changes in AD.
-
Several studies with animal research associate air pollution in Alzheimer's disease (AD) neuropathology, but the actual impact of air pollution on the risk of AD is unknown. Here, this study investigates the association between long-term exposure to ozone (O3) and particulate matter (PM) with an aerodynamic diameter equal to or less than 2.5 μm (PM2.5), and newly diagnosed AD in Taiwan. We conducted a cohort study of 95,690 individuals' age ≥ 65 during 2001-2010. ⋯ Further, we estimated a 211% risk of increase of AD per increase of 10.91 ppb in O3 over the follow-up period (95% CI 2.92-3.33). We found a 138% risk of increase of AD per increase of 4.34 μg/m3 in PM2.5 over the follow-up period (95% CI 2.21-2.56). These findings suggest long-term exposure to O3 and PM2.5 above the current US EPA standards are associated with increased the risk of AD.
-
Destination memory, or the ability to remember the destination to whom a piece of information was addressed, is found to be compromised in Alzheimer's disease (AD). Our paper investigated the relationship between destination memory and theory of mind in AD since both destination memory and theory of mind are social abilities that require processing attributes of interlocutors. ⋯ Significant correlations were observed between destination memory, and 1st and 2nd order cognitive theory of mind in AD participants and controls. By demonstrating a relationship between compromises in 2nd order theory of mind and in destination memory, our work highlights links between social cognition and memory functioning in AD.
-
Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative disorder affecting specific brain regions that control memory and cognitive functions. Epidemiological studies suggest that exercise and dietary antioxidants are beneficial in reducing AD risk. To date, botanical flavonoids are consistently associated with the prevention of age-related diseases. ⋯ Both EGCG and voluntary exercise, separately and in combination, were able to attenuate nest building and Barnes maze performance deficits. Additionally, these interventions lowered soluble Aβ1-42 levels in the cortex and hippocampus. These results, together with epidemiological and clinical studies in humans, suggest that dietary polyphenols and exercise may have beneficial effects on brain health and slow the progression of AD.