Journal of Alzheimer's disease : JAD
-
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. ⋯ Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
-
The apolipoprotein E (APOE) ε4 allele constitutes the major genetic risk for the development of late onset Alzheimer's disease (AD). However, its influence on the neurodegeneration that occurs in early AD remains unresolved. In this study, the resting state magnetoencephalography(MEG) recordings were obtained from 27 aged healthy controls and 36 mild cognitive impairment (MCI) patients. ⋯ Several of these results correlated with cognitive decline and neuropsychological performance. The present study characterizes how the APOE ε4 allele and MCI status affect the brain's functional organization by analyzing the FC patterns in MEG resting state in the sources space. Therefore a combination of genetic, neuropsychological, and neurophysiological information might help to detect MCI patients at higher risk of conversion to AD and asymptomatic subjects at higher risk of developing a manifest cognitive deterioration.
-
Alzheimer's disease (AD) is a progressive, age-dependent neurodegenerative disorder affecting specific brain regions that control memory and cognitive functions. Epidemiological studies suggest that exercise and dietary antioxidants are beneficial in reducing AD risk. To date, botanical flavonoids are consistently associated with the prevention of age-related diseases. ⋯ Both EGCG and voluntary exercise, separately and in combination, were able to attenuate nest building and Barnes maze performance deficits. Additionally, these interventions lowered soluble Aβ1-42 levels in the cortex and hippocampus. These results, together with epidemiological and clinical studies in humans, suggest that dietary polyphenols and exercise may have beneficial effects on brain health and slow the progression of AD.
-
Post-operative cognitive dysfunction (POCD) predominantly affects the elderly who suffer memory and concentration deficits after anesthesia and surgery. Animal studies have demonstrated anesthetic alone may contribute to POCD but results are variable and little is known about common anesthetics other than isoflurane. The present study investigated dose-dependence of desflurane anesthesia in young adult and aged rats. ⋯ Deficits were not long-lasting and were no longer present at 4 or 12 weeks. In contrast, young adult rats performed equally as well as sham-exposed control rats irrespective of desflurane dose. This study showed the effects of desflurane on learning and memory in the water maze are age and dose dependent and are brief in duration.
-
We previously reported that activated microglia are involved in amyloid-β (Aβ) clearance and that stimulation of α7 nicotinic acetylcholine receptors (nAChR) in microglia enhances Aβ clearance. Nevertheless, how microglia and α7 nAChR in microglia are affected in Alzheimer's disease (AD) remains unknown. The present study aimed to collect fundamental data for considering whether microglia are potential targets for AD treatment and the appropriate timing of therapeutic intervention, by evaluating the temporal changes of Aβ, microglia, neurons, presynapses, and α7 nAChR by immunohistochemical studies in mouse models of AD. ⋯ In addition, α7 nAChR in microglia increased markedly at 6 months of age when activated microglia appeared for the first time, and decreased gradually coinciding with the increase of Aβ deposition. These findings suggest that early microglial activation is associated with α7 nAChR upregulation in microglia in APdE9 mice. These novel findings are important for the development of new therapeutic strategy for AD.