Journal of Alzheimer's disease : JAD
-
There is a need to seek new treatment(s) for Alzheimer's disease (AD). A recent study showed that AD patients may have decreased levels of functional GABA receptors. Propofol, a commonly used anesthetic, is a GABA receptor agonist. ⋯ Here we showed that the propofol treatment improved cognitive function and attenuated brain caspase-3 and caspase-9 activation in both aged WT and AD Tg mice. Propofol attenuated Aβ-induced caspase-3 activation and opening of the mitochondrial permeability transition pore in the cells, and flumazenil inhibited the propofol's effects. These results suggested that propofol might improve cognitive function via attenuating the Aβ-induced mitochondria dysfunction and caspase activation, which explored the potential that anesthetic propofol could improve cognitive function in elderly and AD patients.
-
Neurodegenerative disease is one of the greatest health crises in the world and as life expectancy rises, the number of people affected will continue to increase. The most common neurodegenerative disease, Alzheimer's disease, is a tauopathy, characterized by the presence of aggregated tau, namely in the form of neurofibrillary tangles. Historically, neurofibrillary tangles have been considered the main tau species of interest in Alzheimer's disease; however, we and others have shown that tau oligomers may be the most toxic form and the species responsible for the spread of pathology. ⋯ Additionally, we injected pure brain-derived tau oligomers intracerebrally in 3-month-old wild-type and Htau mice and treated animals with biweekly injections of 60 μg TOMA or non-specific IgG. We found that long-term administration of TOMA was effective as a preventative therapy, inhibiting oligomeric tau and preserving memory function. These results support the critical role of oligomeric tau in disease progression and validate tau oligomers as a potential drug target.
-
Apolipoprotein E4 (ApoE4) has been considered to have detrimental effects on the age of onset and progression in Alzheimer's disease. Evidence continues to accumulate regarding the effects of ApoE isoforms in a number of other neurological diseases. ⋯ It further provides evidence of the effect neuroinflammation has in increasing susceptibility to cognitive decline in younger patients. Determining where these diverse diseases intersect and diverge in their relationship to ApoE provides insight into the two-hit mechanism in cognitive decline.
-
Alzheimer's disease (AD) is a progressive, neurodegenerative disease characterized by an increasing incidence. One of the pathologic processes that underlie this disorder is impairment of brain microvasculature. ⋯ With transcranial ultrasound, the most frequently studied parameters are cerebral blood flow velocities and pulsatility indices, cerebrovascular reserve capacity, and cerebral microembolization. On the basis of current knowledge, we recommend using as a transcranial Doppler sonography screening method of choice the assessment of cerebrovascular reserve capacity with breath-holding test.
-
Diffusion tensor imaging (DTI) allows the simultaneous measurement of several diffusion indices that provide complementary information on the substrate of white matter alterations in neurodegenerative diseases. These indices include fractional anisotropy (FA) as measure of fiber tract integrity, and the mode of anisotropy (Mode) reflecting differences in the shape of the diffusion tensor. We used a multivariate approach based on joint independent component analysis of FA and Mode in a large sample of 138 subjects with Alzheimer's disease (AD) dementia, 37 subjects with cerebrospinal fluid biomarker positive mild cognitive impairment (MCI-AD), and 153 healthy elderly controls from the European DTI Study on Dementia to comprehensively study alterations of microstructural white matter integrity in AD dementia and predementia AD. ⋯ Our findings suggest an early axonal degeneration in intracortical projecting fiber tracts in dementia and predementia stages of AD. An increase of Mode, parallel to an increase of FA, in the corticospinal tract suggests a more linear shape of diffusion due to loss of crossing fibers along relatively preserved cortico-petal and cortico-fugal fiber tracts in AD. Supporting this interpretation, we found three populations of fiber tracts, namely cortico-petal and cortico-fugal, commissural, and intrahemispherically projecting fiber tracts, in the peak area of parallel FA and Mode increase.