Journal of Alzheimer's disease : JAD
-
COMT (Catechol-O methyltransferase) gene is one of the key players in synaptic plasticity and in learning and memory mechanisms. A single nucleotide polymorphism (rs4680; G to A) in the COMT coding region causes Val158Met aminoacid substitution in the corresponding protein, with Val allele exhibiting a 3- to 4-fold increase in enzyme activity compared to Met. With the purpose of examining the influence of COMT as a genetic risk factor for cognitive impairment, we analyzed a sample of 248 healthy subjects, 276 patients affected by Alzheimer's disease (AD), and 70 subjects with mild cognitive impairment (MCI), the latter condition possibly representing a prodrome for dementia. ⋯ However, we found an association between COMT GG genotype (Val/Val) and APOE ε4 carrier status and the risk of AD and MCI. In particular, when GG genotype is included into the multinomial analysis, the risk of AD and MCI due to APOE ε4 allele is increased of about 2-3 fold; moreover, the risk conferred by the combination of G and ε4 alleles is more pronounced in male patients. To our knowledge, this synergistic effect is here shown for the first time on a population sample representative of Caucasian patients.
-
Progranulin gene (GRN) mutations cause frontotemporal lobar degeneration (FTLD) with TDP43-positive inclusions, although its clinical phenotype is heterogeneous and includes patients classified as behavioral variant-FTLD (bvFTLD), progressive non-fluent aphasia (PNFA), corticobasal syndrome, Alzheimer's disease (AD), or Parkinson's disease (PD). Our main objective was to study if low serum progranulin protein (PGRN) levels may detect GRN mutations in a Spanish cohort of patients with FTLD or AD. Serum PGRN levels were measured in 112 subjects: 17 bvFTLD, 20 PNFA, 4 semantic dementia, 34 sporadic AD, 9 AD-PSEN1 mutation carriers, 10 presymptomatic-PSEN1 mutation carriers, and 18 control individuals. ⋯ Null GRN mutation carriers also showed lower serum PGRN levels than the patient who was a carrier of p. C139R (92.3 ng/mL) and the one who was a carrier of the PRNP mutation (76.9 ng/mL). In conclusion, we detected GRN null mutations in patients with severely reduced serum PGRN levels, but not in patients with slightly reduced PGRN levels.
-
Sporadic Alzheimer's disease (AD) patients have low amyloid-β peptide (Aβ) clearance in the central nervous system. The peripheral Aβ clearance may also be important but its role in AD remains unclear. We aimed to study the Aβ degrading proteases including insulin degrading enzyme (IDE), angiotensin converting enzyme (ACE) and others in blood. ⋯ The elderly with probable AD had lower serum substrate V degradation activity compared with those who had vascular dementia. The blood proteases mediating Aβ degradation may be important for the AD pathogenesis. More studies are needed to specify each Aβ degrading protease in blood as a useful biomarker and a possible treatment target for AD.
-
The aim of this work was to explore the applicable value of (1)H-MRS evaluation on the treatment of Alzheimer's disease (AD) with neural stem cell (NSC) transplantation by quantitative analysis of metabolite changes in the hippocampal area in AβPP/PS1 transgenic (tg) mice. The tg mice (n = 30) aged 12 months were randomized into two subgroups: One receiving NSCs and the other receiving PBS transplantation in the bilateral hippocampal CA1 region. The wild-type mice (n = 15) were used as the control group. (1)H-MRS was performed before transplantation and 6 weeks after transplantation to measure the change of N-acetylaspartate (NAA), myo-inositol (mI), glutamate (Glu), choline (Cho), and creatine (Cr) in the hippocampus. ⋯ Histology showed the number of neurons in the hippocampal CA1 region increased significantly in the NSC group than those in the PBS group (p < 0.05), and the number of astrocytes significantly decreased in the NSC group compared with the PBS group. Ultrastructure showed that the neurons in the NSC group were morphologically normal. In conclusion, (1)H-MRS can display intracranial metabolite changes before and after NSC transplantation in tg mice and has a applicable value in evaluating the therapeutic effect of NSCs on AD.
-
Therapeutic agents that improve the memory loss of Alzheimer's disease (AD) may eventually be developed if drug targets are identified that improve memory deficits in appropriate AD animal models. One such target is β-secretase which, in most AD patients, cleaves the wild-type (WT) β-secretase site sequence of the amyloid-β protein precursor (AβPP) to produce neurotoxic amyloid-β (Aβ). Thus, an animal model representing most AD patients for evaluating β-secretase effects on memory deficits is one that expresses human AβPP containing the WT β-secretase site sequence. ⋯ But deletion of the BACE1 gene had no effect on these parameters in the AβPPWT/Lon mice. These data are the first to show that knockout of a putative β-secretase gene results in improved memory in an AD animal model expressing the WT β-secretase site sequence of AβPP, present in the majority of AD patients. CatB may be an effective drug target for improving memory deficits in most AD patients.