Journal of Alzheimer's disease : JAD
-
Comparative Study
The γ-secretase modulator CHF5074 restores memory and hippocampal synaptic plasticity in plaque-free Tg2576 mice.
Abnormal amyloid-β (Aβ) production and deposition is believed to represent one of the main causes of Alzheimer's disease (AD). γ-Secretase is the enzymatic complex responsible for Aβ generation from its precursor protein. Inhibition or modulation of γ-secretase represents an attractive therapeutic approach. CHF5074 is a new γ-secretase modulator that has been shown to inhibit brain plaque deposition and to attenuate memory deficit in adult AD transgenic mice after chronic treatment. ⋯ These cognitive effects were associated with a reversal of long-term potentiation (LTP) impairment in the hippocampus. A significant reduction in brain intraneuronal AβPP/Aβ levels and hyperphosphorylated tau, but no change in soluble or oligomeric Aβ levels was detected in Tg2576 mice showing functional recovery following CHF5074 treatment. We conclude that the beneficial effects of CHF5074 treatment in young transgenic mice occurred at a stage that precedes plaque formation and were associated with a reduction in intraneuronal AβPP/Aβ and hyperphosphorylated tau.
-
Impaired episodic memory is currently an exclusion criterion for behavioral variant frontotemporal dementia (bv-FTD), although prior studies have shown that neuropsychological memory performance varies from very impaired to intact in such patients. Our study investigated i) whether this variability might be due to the admixture of true bv-FTD and phenocopy syndrome patients and ii) the neural correlates of episodic memory deficits in bvFTD. Groups of patients with true bvFTD (n = 14), phenocopy syndrome (n = 6), Alzheimer's disease (AD) (n = 14), and healthy controls (n = 15) underwent memory testing and had MRI scanning with ratings of regional brain atrophy. ⋯ Taken together, out data shows that bvFTD patients can show a similar degree of episodic memory impairment on neuropsychological tests to AD patients, however, the neural correlates differ. The previously variable reported memory performance in bvFTD is likely due to the inclusion of phenocopy patients, who are mostly undistinguishable from controls. These findings have implications for the diagnosis of bvFTD.
-
Adult neurogenesis, the production of new neurons in certain brain regions, is known to decrease with age and the loss of neurogenic potential has been implicated in Alzheimer's disease (AD), a leading cause of dementia in the elderly. Cerebrolysin (CBL) has been shown to increase neurogenesis in models of stroke and AD. CBL is composed of small peptides with activity similar to neurotrophic factors including ciliary neurotrophic factor (CNTF), which may mediate its neurogenic effects. ⋯ In contrast, AβPP tg mice treated with CBL displayed reduced levels of TUNEL staining, while levels of PCNA were unaltered. Collectively these results demonstrate that while CBL and Peptides 6 and 6A all potentiate neurogenesis in the AβPP tg mice, their relative modes of action may differ with CBL associated with reduced apoptosis and Peptides 6 and 6A working by augmenting cell proliferation. These results are consistent with a potential therapeutic relevance for Peptides 6 and 6A in AD and other disorders characterized by neurogenic deficits.
-
Amyloid-β (Aβ) is the core component of amyloid plaques of Alzheimer's disease (AD). The effects of Aβ include damage to neuronal plasma membrane, disruption of Ca(2+) homeostasis, and alterations of neurotrophic factor levels. The aim of this study was to determine the effects of Aβ treatment on vitamin D receptor (VDR), L-type voltage sensitive calcium channels A1C (LVSCC A1C), NGF, and observing the effects of vitamin D treatment on Aβ induced alterations in primary cortical neurons. ⋯ Administration of vitamin D to this model protected neurons by preventing cytotoxicity and apoptosis, and also by downregulating LVSCC A1C and upregulating VDR. Additionally, vitamin D brought NGF expression to a state of equilibrium and did not show its apoptosis inducing effects. Consequently, prevention of Aβ toxicity which was one of the major component of AD type pathology by vitamin D treatment and understanding how Aβ effects vitamin D related pathways, might open up new frontiers in clarifying molecular mechanisms of neurodegeneration and provide basis for novel perspectives in both preventing and treating AD.
-
The cysteine protease cathepsin B is a potential drug target for reducing brain amyloid-β (Aβ) and improving memory in Alzheimer's disease (AD), as reduction of cathepsin B in transgenic mice expressing human wild-type amyloid-β protein precursor (AβPP) results in significantly decreased brain Aβ. Cathepsin B cleaves the wild-type β-secretase site sequence in AβPP to produce Aβ, and cathepsin B inhibitors administered to animal models expressing AβPP containing the wild-type β-secretase site sequence reduce brain Aβ in a manner consistent with β-secretase inhibition. But such inhibitors could act either by direct inhibition of cathepsin B β-secretase activity or by off-target inhibition of the other β-secretase, the aspartyl protease BACE1. ⋯ In guinea pigs, oral E64d administration caused a dose-dependent reduction of up to 92% in brain, CSF, and plasma of Aβ40 and Aβ42, a reduction of up to 50% in the C-terminal β-secretase fragment (CTFβ), and a 91% reduction in brain cathepsin B activity, but increased brain BACE1 activity by 20%. In transgenic AD mice, oral E64d administration improved memory deficits and reduced brain Aβ40 and Aβ42, amyloid plaque, brain CTFβ, and brain cathepsin B activity, but increased brain BACE1 activity. We conclude that E64d likely reduces brain Aβ by inhibiting cathepsin B and not BACE1 β-secretase activity and that E64d therefore may have potential for treating AD patients.