Journal of Alzheimer's disease : JAD
-
Instrumental activities of daily living (IADL) impairment and apathy occur in early-stage Alzheimer's disease (AD) and are associated with regional atrophy and hypometabolism in vivo and greater tau burden at autopsy. ⋯ This exploratory study suggests that IADL impairment in AD is associated with medial temporal and frontal tau, especially in individuals with elevated amyloid, while apathy may be associated with right frontal tau.
-
Brain amyloid-β (Aβ) deposition is a hallmark to define Alzheimer's disease (AD). We investigated the positive rate of brain amyloid deposition assessed with 11C-Pittsburgh compound (PiB)-PET and blood Aβ levels in a cohort of probable AD patients who were diagnosed according to the 1984 NINCDS-ADRDA criteria. Eighty-four subjects with a clinical diagnosis of probable AD dementia, amnestic mild cognitive impairment (MCI), and cognitively normal (CN) status were subjected to PiB-PET and 18F-fluorodeoxyglucose (FDG)-PET scans. ⋯ Plasma Aβ42/Aβ40 ratio was associated with PiB-PET, the ROC curve analysis revealing an AUC of 0.77 (95% CI: 0.66-0.87), with a sensitivity of 82% and specificity of 64%. Some clinical manifestations were associated with PiB-PET imaging. Our findings indicate that only three-fourths of patients diagnosed with probable AD fit the pathological criteria, suggesting that we should be cautious regarding the accuracy of AD diagnosis when no biomarker evidence is available in our clinical practice.
-
Amyloid pathology is a key feature of Alzheimer's disease (AD) and can be assessed in vivo with amyloid positron emission tomography (PET) imaging. ⋯ Amyloid PET represents a source of added value in dementia diagnosis, with a significant effect on diagnosis and diagnostic confidence. However, the use of a complete neuropsychological assessment has an add-on value on limiting the amyloid PET influence on change of diagnosis, and the real impact of amyloid PET should always be weighed up together with an accurate standardized diagnostic workup.
-
Review Meta Analysis
White Matter Hyperintensities and Cognition in Mild Cognitive Impairment and Alzheimer's Disease: A Domain-Specific Meta-Analysis.
White matter hyperintensities (WMHs) are related to cognitive dysfunction in the general population. The clinical relevance of WMHs in patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) is, however, unclear. ⋯ WMHs have a medium-sized association with different cognitive functions in patients with MCI and a small, but statistically significant, association with cognition in AD. These result underscore the role of co-occurring vascular brain damage in MCI and AD.
-
Alzheimer's disease (AD) features a dynamic sequence of amyloid deposition, neurodegeneration, and cognitive impairment. A significant fraction of AD brains also displays Lewy body pathology, suggesting that addition of classically Parkinson's disease-related proteins to the AD biomarker panel may be of value. To determine whether addition of cerebrospinal fluid (CSF) total α-synuclein and its form phosphorylated at S129 (pS129) to the AD biomarker panel [Amyloid-β1-42 (Aβ42), tau, and phosphorylated tau (p-tau181)] improves its performance, we examined CSF samples collected longitudinally up to 7 years as part of the Alzheimer's Disease Neuroimaging Initiative. ⋯ Lower values in the mismatch between α-synuclein and p-tau181 predicted faster cognitive decline (β= 0.64, p = 0.0012, 95% CI [(0.48)-(0.84)]). Longitudinal biomarker changes did not differ between groups, and may not reflect AD progression. The α-synuclein-p-tau181-Mismatch could better predict longitudinal cognitive changes than classical AD markers alone, and its pathological correlates should be investigated further.