Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology
-
Comparative Study
Performance evaluation of Abbott ARCHITECT SARS-CoV-2 IgG immunoassay in comparison with indirect immunofluorescence and virus microneutralization test.
Serological tests for anti-SARS-CoV-2 antibodies are becoming of great interest to determine seroprevalence in a given population, define previous exposure and identify highly reactive human donors for the generation of convalescent serum as therapeutic. ⋯ In our study, Abbott ARCHITECT SARS-CoV-2 IgG assay showed a satisfactory performance, with a very high specificity. IgG reactivity against SARSCoV-2 N antigen was detectable in all patients by two weeks after symptoms onset. In addition, concordance between this serological response and viral neutralization suggests that a strong humoral response may be predictive of a neutralization activity, regardless of the target antigens. This finding supports the use of this automated serological assay in diagnostic algorithm and public health intervention, especially for high loads of testing.
-
Serological SARS-CoV-2 assays are urgently needed for diagnosis, contact tracing and for epidemiological studies. So far, there is limited data on how recently commercially available, high-throughput immunoassays, using different recombinant SARS-CoV-2 antigens, perform with clinical samples. Focusing on IgG and total antibodies, we demonstrate the performance of four automated immunoassays (Abbott Architect™ i2000 (N protein-based)), Roche cobas™ e 411 analyzer (N protein-based, not differentiating between IgA, IgM or IgG antibodies), LIAISON®XL platform (S1 and S2 protein-based), VIRCLIA® automation system (S1 and N protein-based) in comparison to two ELISA assays (Euroimmun SARS-CoV-2 IgG (S1 protein-based) and Virotech SARS-CoV-2 IgG ELISA (N protein-based)) and an in-house developed plaque reduction neutralization test (PRNT). ⋯ This should be further analysed. The specificity of the examined assays was ≥ 97%. However, because of the low or unknown prevalence of SARS-CoV-2, the examined assays in this study are currently primarily eligible for epidemiological investigations, as they have limited information in individual testing.
-
The recent outbreak of coronavirus disease 2019 (COVID-19) has spread worldwide, with especially severe epidemics occurring in cities across China. ⋯ The COVID-19 infection was of clustering onset and can cause severe respiratory disease and even death. The mortality of ICU patients with COVID-19 was considerably high.
-
SARS-CoV-2 infection diagnosis is challenging in patients from 2 to 3 weeks after the onset of symptoms, due to the low positivity rate of the PCR. Serologic tests could be complementary to PCR in these situations. The aim of our study was to analyze the diagnostic performance of one serologic rapid test in COVID-19 patients. ⋯ Our study shows that Alltest lateral flow immunoassay is reliable as a complement of PCR to diagnose SARS-CoV-2 infection after 14 days from the onset of symptoms and in patients with pneumonia and negative PCR for SARS-CoV-2.
-
The severe shortage of nucleic acid extraction kits during the current COVID-19 pandemic represents a key limiting factor in testing capacity. ⋯ PKH pre-processing resulted in the highest detection rate of SARS-CoV-2 by RT-PCR, and represents an alternative method for nucleic acid extraction when commercial extraction kits are not available.