Physiological genomics
-
Physiological genomics · May 2010
Intermittent and sustained hypoxia induce a similar gene expression profile in human aortic endothelial cells.
Obstructive sleep apnea may cause vascular inflammation and atherosclerosis, which has been attributed to intermittent hypoxia (IH). Recent data suggest that IH, but not sustained hypoxia (SH), activates proinflammatory genes in HeLa cells. Effects of IH and SH on the gene expression profile in human aortic endothelial cells (HAEC) have not been compared. ⋯ IH and SH-4% also upregulated antioxidant genes, including heme oxygenase-1 and nuclear factor (erythroid-derived 2)-like 2 (NRF2), whereas classical genes regulated by hypoxia-inducible factor 1 (HIF-1), such as endothelin and glucose transporter GLUT1, were not induced. SH-8% induced changes in gene expression and cytokine secretion that were similar to those of IH and SH-4%. In conclusion, short exposures to IH and SH upregulate proinflammatory and antioxidant genes in HAEC and increase secretion of proinflammatory cytokines IL-8 and IL-6 into media in similar fashions.
-
Physiological genomics · Apr 2010
Regulatory T cell-mediated resolution of lung injury: identification of potential target genes via expression profiling.
In animal models of acute lung injury (ALI), gene expression studies have focused on the acute phase of illness, with little emphasis on resolution. In this study, the acute phase of intratracheal lipopolysaccharide (IT LPS)-induced lung injury was similar in wild-type (WT) and recombinase-activating gene-1-deficient (Rag-1(-/-)) lymphocyte-deficient mice, but resolution was impaired and resolution-phase lung gene expression remained different from baseline only in Rag-1(-/-) mice. ⋯ After adoptive transfer of isolated CD4+CD25+Foxp3+ regulatory T cells (Tregs) to Rag-1(-/-) mice at the time of IT LPS, resolution was similar to that in WT mice. Of the 102 genes distinctly changed in either WT or Rag-1(-/-) mice from our 7 gene ontologies, 19 genes reverted from the Rag-1(-/-) to the WT pattern of expression after adoptive transfer of Tregs, implicating those 19 genes in Treg-mediated resolution of ALI.
-
Physiological genomics · Mar 2010
Comparative StudySimilarities and differences between smoking-related gene expression in nasal and bronchial epithelium.
Previous studies have shown that physiological responses to cigarette smoke can be detected via bronchial airway epithelium gene expression profiling and that heterogeneity in this gene expression response to smoking is associated with lung cancer. In this study, we sought to determine the similarity of the effects of tobacco smoke throughout the respiratory tract by determining patterns of smoking-related gene expression in paired nasal and bronchial epithelial brushings collected from 14 healthy nonsmokers and 13 healthy current smokers. Using whole genome expression arrays, we identified 119 genes whose expression was affected by smoking similarly in both bronchial and nasal epithelium, including genes related to detoxification, oxidative stress, and wound healing. ⋯ Differential expression of select genes was also confirmed by RT-PCR. That smoking induces largely similar gene expression changes in both nasal and bronchial epithelium suggests that the consequences of cigarette smoke exposure can be measured in tissues throughout the respiratory tract. Our findings suggest that nasal epithelial gene expression may serve as a relatively noninvasive surrogate to measure physiological responses to cigarette smoke and/or other inhaled exposures in large-scale epidemiological studies.
-
Physiological genomics · May 2009
Noninjurious mechanical ventilation activates a proinflammatory transcriptional program in the lung.
Mechanical ventilation is a life-saving intervention in patients with respiratory failure. However, human and animal studies have demonstrated that mechanical ventilation using large tidal volumes (>or=12 ml/kg) induces a potent inflammatory response and can cause acute lung injury. We hypothesized that mechanical ventilation with a "noninjurious" tidal volume of 10 ml/kg would still activate a transcriptional program that places the lung at risk for severe injury. ⋯ Electrophoretic mobility gel shift assay confirmed protein binding to activator protein-1 (AP-1) consensus sequences, and supershift experiments identified JunD and FosB as components of ventilation-induced AP-1 binding. Specific recruitment of JunD to the regulatory region of the F3 gene by mechanical ventilation was confirmed by chromatin immunoprecipitation assay. In conclusion, we demonstrate a novel computational framework to systematically dissect transcriptional programs activated by mechanical ventilation in the lung, and show that noninjurious mechanical ventilation initiates a response that can prime the lung for injury from a subsequent insult.
-
We previously generated genome-wide expression data (microarray) from children with septic shock having the potential to lead the field into novel areas of investigation. Herein we seek to validate our data through a bioinformatic approach centered on a validation patient cohort. Forty-two children with a clinical diagnosis of septic shock and 15 normal controls served as the training data set, while 30 separate children with septic shock and 14 separate normal controls served as the test data set. ⋯ However, functional analysis of this statistics-based gene list demonstrated similar functional annotations and signaling pathways as that seen in the training data set. In particular, we validated that pediatric septic shock is characterized by large-scale repression of genes related to zinc homeostasis and lymphocyte function. These data demonstrate that the previously reported genome-wide expression signature of pediatric septic shock is applicable to a validation cohort of patients.