Annals of cardiac anaesthesia
-
Extracorporeal membrane oxygenation (ECMO) refers to specific mechanical devices used to temporarily support the failing heart and/or lung. Technological advances as well as growing collective knowledge and experience have resulted in increased ECMO use and improved outcomes. Veno-arterial (VA) ECMO is used in selected patients with various etiologies of cardiogenic shock and entails either central or peripheral cannulation. ⋯ Newer dual lumen VV ECMO cannulas may facilitate extubation and mobilization. In summary, the pathology being addressed impacts the ECMO approach that is deployed, and each ECMO implementation has distinct virtues and drawbacks. Understanding these considerations is crucial to safe and effective ECMO use.
-
Review Meta Analysis
Extracorporeal membrane oxygenation in severe influenza infection with respiratory failure: A systematic review and meta-analysis.
Extracorporeal membrane oxygenation (ECMO) has been extensively used for potentially reversible acute respiratory failure associated with severe influenza A (H1N1) pneumonia; however, it remains an expensive, resource-intensive therapy, with a high associated mortality. This systematic review and meta-analysis aims to summarize and pool outcomes data available in the published literature to guide clinical decision-making and further research. ⋯ ECMO therapy may be used as an adjunct or salvage therapy for severe H1N1 pneumonia with respiratory failure. It is associated with a prolonged duration of ventilator support, ICU length of stay, and high mortality. Initiating ECMO early once the patient has been instituted on mechanical ventilation may result in improved survival.
-
Randomized Controlled Trial Multicenter Study
Goal-directed therapy improves the outcome of high-risk cardiac patients undergoing off-pump coronary artery bypass.
There has been a constant emphasis on developing management strategies to improve the outcome of high-risk cardiac patients undergoing surgical revascularization. The performance of coronary artery bypass surgery on an off-pump coronary artery bypass (OPCAB) avoids the risks associated with extra-corporeal circulation. The preliminary results of goal-directed therapy (GDT) for hemodynamic management of high-risk cardiac surgical patients are encouraging. The present study was conducted to study the outcome benefits with the combined use of GDT with OPCAB as compared to the conventional hemodynamic management. ⋯ The length of stay in hospital (LOS-H) (7.42 ± 1.48 vs. 5.61 ± 1.11 days, P < 0.001) and ICU stay (4.2 ± 0.82 vs. 2.53 ± 0.56 days, P < 0.001) were significantly lower in the GDT group as compared to control group. The duration of inotropes (3.24 ± 0.73 vs. 2.89 ± 0.68 h, P = 0.005) was also significantly lower in the GDT group. The two groups did not differ in duration of ventilated hours, mortality, and other complications. The parameters such as ScVO 2 , CI, and EVLW had a strong negative and positive correlation with the LOS-H with r values of - 0.331, -0.319, and 0.798, respectively. The study elucidates the role of a goal-directed hemodynamic optimization for improved outcome in high-risk cardiac patients undergoing OPCAB.
-
Randomized Controlled Trial
Outcome of four pretreatment regimes on hemodynamics during electroconvulsive therapy: A double-blind randomized controlled crossover trial.
Electroconvulsive therapy (ECT) is associated with tachycardia and hypertension. ⋯ Dexmedetomidine 1 μg/kg, 0.5 μg/kg, and esmolol produced significant amelioration of cardiovascular response to ECT without affecting seizure duration, results being best with dexmedetomidine 1 μg/kg. However, the latter has the shortcoming of delayed recovery.
-
Extracorporeal cardiopulmonary resuscitation (ECPR) is the use of rapid deployment venoarterial (VA) extracorporeal membrane oxygenation to support systemic circulation and vital organ perfusion in patients in refractory cardiac arrest not responding to conventional cardiopulmonary resuscitation (CPR). Although prospective controlled studies are lacking, observational studies suggest improved outcomes compared with conventional CPR when ECPR is instituted within 30-60 min following cardiac arrest. Adult and pediatric patients with witnessed in-hospital and out-of-hospital cardiac arrest and good quality CPR, failure of at least 15 min of conventional resuscitation, and a potentially reversible cause for arrest are candidates. ⋯ Modern extracorporeal systems are easy to prime and manage and are technically easy to manage with proper training and experience. ECPR can be deployed in the emergency department for out-of-hospital arrest or in various inpatient units for in-hospital arrest. ECPR should be considered for patients with refractory cardiac arrest in hospitals with an existing extracorporeal life support program, able to provide rapid deployment of support, and with resources to provide postresuscitation evaluation and management.