IEEE transactions on ultrasonics, ferroelectrics, and frequency control
-
IEEE Trans Ultrason Ferroelectr Freq Control · Aug 2005
A system for simultaneously measuring contact force, ultrasound, and position information for use in force-based correction of freehand scanning.
During freehand ultrasound imaging, the sonographer places the ultrasound probe on the patient's skin. This paper describes a system that simultaneously records the position of the probe, the contact force between the probe and skin, and the ultrasound image. ⋯ Measurements made with the system showed good agreement with those obtained from a standard materials testing machine. The system's uses include three-dimensional (3-D) ultrasound imaging, force-based deformation correction of ultrasound images, and indentation testing.
-
IEEE Trans Ultrason Ferroelectr Freq Control · May 2005
Comparative StudyCompact FPGA-based beamformer using oversampled 1-bit A/D converters.
A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. ⋯ The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Sep 2004
Comparative StudyContrast echocardiography for pulmonary blood volume quantification.
Pulmonary blood volume quantification is important both for diagnosis and for monitoring of the circulatory system. It requires employment of transpulmonary indicator dilution techniques, which are very invasive due to the need for double catheterization. This paper presents a new minimally invasive technique for blood volume quantification. ⋯ The results show very accurate volume measurements. The volume estimate determination coefficient is greater than 0.999 for both model fits. A preliminary study in patients shows promising results.
-
IEEE Trans Ultrason Ferroelectr Freq Control · May 2004
Comparative StudyModel-based reconstructive elasticity imaging of deep venous thrombosis.
Deep venous thrombosis (DVT) and its sequela, pulmonary embolism, is a significant clinical problem. Once detected, DVT treatment is based on the age of the clot. There are no good noninvasive methods, however, to determine clot age. ⋯ Compared to an unconstrained approach in reconstructive elasticity imaging, the proposed model-based approach has several advantages: only one component of the strain tensor is used; the minimization procedure is very fast; the method is highly efficient because an analytic solution of the forward elastic problem is used; and the method is not very sensitive to the details of the external load pattern--a characteristic that is important for free-hand, external, surface-applied deformation. The approach was tested theoretically using a numerical model, and experimentally on both tissue-like phantoms and an animal model of DVT. Results suggest that elasticity reconstruction may prove to be a practical adjunct to triplex scanning to detect, diagnose, and stage DVT.
-
IEEE Trans Ultrason Ferroelectr Freq Control · Nov 2002
Development and characterization of a vitreous mimicking material for radiation force imaging.
In many medical ultrasound applications tissue-mimicking phantoms are of fundamental importance for the performance of controlled experiments. Traditionally, such phantoms have been constructed using gelatin and agar gels. Although the use of these materials has become standard, few alternative materials have not been fully explored. ⋯ Maximum displacements ranged between 30 and 5 microns, depending on acrylamide concentration. The results presented in this paper show that soft gel phantoms can be produced in a range of elasticities not previously reported, and that these phantoms are useful for testing ultrasound instruments designed for evaluation of the vitreous gel. Furthermore, the use of acrylamide-based gels may also offer a valuable and attractive alternative for many other ultrasound applications.