Canadian journal of physiology and pharmacology
-
Can. J. Physiol. Pharmacol. · Apr 2010
Comparative StudyEffect of sex steroid hormones on brain edema, intracranial pressure, and neurologic outcomes after traumatic brain injury.
Recent studies have reported that estrogen and progesterone have a neuroprotective effect after traumatic brain injury (TBI); however, the mechanism(s) for this effect have not yet been elucidated. The aim of the present study was to investigate the role of sex steroid hormones on changes in brain edema, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) after TBI in ovariectomized (OVX) rats. In this study, 50 female rats were divided into 5 groups: control (intact), sham, and 3 TBI groups consisting of vehicle, estrogen (1 mg/kg), and progesterone (8 mg/kg). ⋯ The CPP in the estrogen and progesterone groups increased after 24 h compared with vehicle (p < 0.001). Also after TBI, the neurological score (veterinary coma scale) was significantly higher than vehicle at 1 h (p < 0.01) and 24 h (p < 0.001) in the group treated with estrogen. In conclusion, pharmacological doses of estrogen and progesterone improved ICP, CPP, and neurological scores after TBI in OVX rats, which implies that these hormones play a neuroprotective role in TBI.
-
Can. J. Physiol. Pharmacol. · Aug 2009
Comparative StudyRho-kinase inhibitors Y-27632 and fasudil prevent agonist-induced vasospasm in human radial artery.
Radial artery (RA) vasospasm remains a potential cause of early graft failure after coronary artery bypass graft surgery, despite pretreatment with alpha-adrenergic or calcium channel blockers. Our aim was to investigate the mechanism of the vasorelaxant effects of Rho-kinase inhibitors (Y-27632 and fasudil) on the human RA. Segments were obtained from 30 patients undergoing coronary artery bypass graft and were divided into 3-4 mm vascular rings. ⋯ These findings indicate that Y-27632 and fasudil caused concentration-dependent vasorelaxation in the RA rings. Because this effect was decreased in a dose-dependent manner by L-NNA and ODQ, the relaxant effects of Y-27632 and fasudil could be due to stimulation by nitric oxide that is being released. Rho-kinase inhibitors may have an important role in preventing vasospasm in arterial grafts used for coronary artery surgery.
-
Can. J. Physiol. Pharmacol. · Jun 2009
URB597, an inhibitor of fatty acid amide hydrolase, reduces hyperalgesia in diabetic rats.
Diabetic rats display increased pain responses after injection of formalin into the paw or thermal stimulation of the tail, suggesting the presence of hyperalgesia. In this study, we investigated the efficacy of URB597 (0.1, 0.3, and 0.5 mg/kg, i.p.), an inhibitor of endocannabinoids metabolism, on 2 models of experimental hyperalgesia in streptozotocin (STZ)-induced diabetic rats. Animals were divided into control, URB597-treated control (0.1, 0.3, and 0.5 mg/kg), diabetic, and URB597-treated diabetic (0.1, 0.3, and 0.5 mg/kg) groups. ⋯ URB597 treatment did not affect body weight or plasma glucose level of treated animals compared with nontreated animals. This study shows that increasing endocannabinoid neurotransmission with URB597 displays efficacy in chemical and thermal models of diabetic hyperalgesia. It also suggests that URB597 is a promising tool for treatment of painful diabetic neuropathy.
-
Can. J. Physiol. Pharmacol. · Feb 2009
ReviewTransient receptor potential: a large family of new channels of which several are involved in cardiac arrhythmia.
The transient receptor potential (TRP) family of ion channels comprises more than 50 cation-permeable channels expressed throughout the animal kingdom. TRPs can be grouped into 7 main subfamilies according to structural homology: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), TRPA (ankyrin), and TRPN (NO mechanopotential). ⋯ The later part of this review focuses on the potential contribution of TRPs to cardiac rhythm and their potential proarrhythmic effects. Furthermore, several neurotransmitters that activate the formation of diacylglycerol could modulate cardiac rhythm or, like ATP, induce arrhythmia.
-
Can. J. Physiol. Pharmacol. · Jun 2008
ETA-receptor blockade impairs vasoconstriction after hemorrhage in xenon-anesthetized dogs treated with an AT1-receptor antagonist.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. ⋯ after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.