Med Phys
-
The objective of this research was to demonstrate accuracy of a real-time passive ultrasound magnetic needle guidance technology (NGT) and target localization algorithm using conventional anechogenic contact phantoms and a novel fluid-filled hyperechogenic phantom simulating nerve block technique. ⋯ NGT systems employing magnetic field generation and electromagnetic sensors to track needle position and orientation relative to a sonoanatomical target within a magnetic field have the potential to enable greater accuracy for complex needle placements and reduce unintentional needle contact, particularly in novice users. Further, NGT visualizations of needle tip and projected trajectory contribute to positive ergonomics and reducing quality-compromising behaviors among operators, potentially reducing fatigue and needle progression error. This work was supported by funding provided by the GE Healthcare Ultrasound Business, Milwaukee, WI.
-
Given the paucity of available data concerning radiotherapy-induced urinary toxicity, it is important to ensure derivation of the most robust models with superior predictive performance. This work explores multiple statistical-learning strategies for prediction of urinary symptoms following external beam radiotherapy of the prostate. ⋯ Logistic regression and MARS were most likely to be the best-performing strategy for the prediction of urinary symptoms with elastic-net and random forest producing competitive results. The predictive power of the models was modest and endpoint-dependent. New features, including spatial dose maps, may be necessary to achieve better models.
-
Radiation treatment planning involves a complex workflow that has multiple potential points of vulnerability. This study utilizes an incident reporting system to identify the origination and detection points of near-miss errors, in order to guide their departmental safety improvement efforts. Previous studies have examined where errors arise, but not where they are detected or applied a near-miss risk index (NMRI) to gauge severity. ⋯ Incident learning systems can be used to assess the most common points of error origination and detection in radiation oncology. This can help tailor safety improvement efforts and target the highest impact portions of the workflow. The most severe near-miss events tend to originate during simulation, with the most severe near-miss events detected at the time of patient treatment. Safety barriers can be improved to allow earlier detection of near-miss events.
-
An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. ⋯ Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.
-
Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. ⋯ The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily adaptable to other types of whole tissue specimen, such as mastectomy or liver resection.