Med Phys
-
Comparative Study
Evaluation of the cone beam CT for internal target volume localization in lung stereotactic radiotherapy in comparison with 4D MIP images.
To investigate whether the three-dimensional cone-beam CT (CBCT) is clinically equivalent to the four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) reconstructed images for internal target volume (ITV) localization in image-guided lung stereotactic radiotherapy. ⋯ The extreme location and the centroid position of the objects agree with each other between the two image modalities when the breathing motion is sinusoidal. Although the ITV volumes delineated from both image modalities changed with the motion period, the differences in ITV between the two modalities were minimal when an optimized window level was used. The authors' results suggest that CBCT and MIP images are equivalent in determining an ITV's position in the conditions studied. The CBCT is adequate in providing imaging-guidance for lung cancer treatment.
-
Ultrasound can be used to noninvasively produce different bioeffects via viscous heating, acoustic cavitation, or their combination, and these effects can be exploited to develop a wide range of therapies for cancer and other disorders. In order to accurately localize and control these different effects, imaging methods are desired that can map both temperature changes and cavitation activity. To address these needs, the authors integrated an ultrasound imaging array into an MRI-guided focused ultrasound (MRgFUS) system to simultaneously visualize thermal and mechanical effects via passive acoustic mapping (PAM) and MR temperature imaging (MRTI), respectively. ⋯ The authors have demonstrated the feasibility of integrating an ultrasound imaging array into an MRgFUS system to simultaneously map localized cavitation activity and temperature. The authors anticipate that this integrated approach can be utilized to develop controllers for cavitation-enhanced ablation and facilitate the optimization and development of this and other ultrasound therapies. The integrated system may also provide a useful tool to study the bioeffects of acoustic cavitation.
-
Identifying water and fat unambiguously in multipoint Dixon imaging often requires phase correction, which can be challenging and may fail. The purpose of this work is to present a geometric interpretation of the two-point Dixon method with flexible echo times (TEs) and to investigate the conditions under which water and fat can be determined directly without phase correction. ⋯ The problem of direct water and fat determination without phase correction can be understood geometrically. Using the physicality requirement, it is possible to identify the different TE combinations and imaging conditions under which water and fat imaging can be performed either completely without phase correction or by generating a first-pass solution that can be used to improve the processing reliability of a phase-correction based method.
-
Health Physics and Radiological Health, 4th Edition. Johnson Thomas E., Birky Brian K., Lippincott Williams & Wilkins, a Walter Kluwer business, Baltimore, Maryland, 2012, $205.99. ISBN: 9781609134198, 1288 pp. (hardcover).
-
A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions. ⋯ Results from both the mathematical and physical phantom suggest the k-means-based classification algorithm could be useful for rapid, dynamic imaging in an ROI for thermal interventions. Successful separation of fat/water information would aid in reducing errors from the nontemperature sensitive fat PRF, as well as potentially facilitate using fat as an internal reference for PRF shift thermometry when appropriate. Additionally, the T1-W or R2* signals may be used for monitoring temperature in surrounding adipose tissue.