Med Phys
-
The aim of this study was to develop an effective postprocessing method to increase the signal-to-noise ratio in successive multi-echo magnetic resonance (MR) images acquired at multiple time points and generate high-quality multiple T(2)(*) contrast images from low-quality multi-echo images. ⋯ This study demonstrated that denoising methods in the temporal-domain can effectively suppress noise in the spatial domain, and increase signal-to-noise ratio (SNR) for each image of different T(2)(*) weights at multiple time points, resulting in multiple high-quality T(2)(*) contrast images.
-
To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. ⋯ In dual-source dual-energy CT, optimal virtual monochromatic energy depends on patient size, dose partitioning, and the image quality metric optimized. With the optimal monochromatic energy, the noise level was similar to and the iodine CNR was better than that in 120 kV images for the same radiation dose. Compared to single-energy 80 kV images, the iodine CNR in virtual monochromatic images was lower for small to large phantom sizes.
-
Target delineation within volumetric imaging is a critical step in the planning process of intensity modulated radiation therapy. In endoluminal cancers, endoscopy often reveals superficial areas of visible disease beyond what is seen on volumetric imaging. Quantitatively relating these findings to the volumetric imaging is prone to human error during the recall and contouring of the target. We have developed a method to improve target delineation in the radiation therapy planning process by quantitatively registering endoscopic findings contours traced on endoscopic images to volumetric imaging. ⋯ Registration of contours generated on 2D endoscopic images to 3D planning space is feasible, with accuracy smaller than typical set-up margins. Used in addition to standard 3D contouring methods in radiation planning, the technology may improve gross tumour volume (GTV) delineation for superficial tumors in luminal sites that are only visible in endoscopy.
-
Online image guidance (IG) has been used to effectively correct the setup error and inter-fraction rigid organ motion for prostate cancer. However, planning margins are still necessary to account for uncertainties such as deformation and intra-fraction motion. The purpose of this study is to investigate the effectiveness of an adaptive planning technique incorporating offline dose feedback to manage inter-fraction motion and residuals from online correction. ⋯ We have demonstrated the effectiveness of offline dose compensation technique in image-guided radiotherapy for prostate cancer. It can effectively account for residual uncertainties which cannot be corrected through online IG. Dose compensation allows further margin reduction and critical organs sparing.
-
The purpose of this work was to evaluate dose performance and image quality in thoracic CT using three techniques to reduce dose to the breast: bismuth shielding, organ-based tube current modulation (TCM) and global tube current reduction. ⋯ Organ-based TCM produces dose reduction to the breast similar to that achieved with bismuth shielding for both pediatric and adult phantoms. However, organ-based TCM does not affect image noise or CT number accuracy, both of which are adversely affected by bismuth shielding. Alternatively, globally decreasing the tube current can produce the same dose reduction to the breast as bismuth shielding, with a similar noise increase, yet without the streak artifacts and CT number errors caused by the bismuth shields. Moreover, globally decreasing the tube current reduces the dose to all tissues scanned, not simply to the breast.