Med Phys
-
Clinical Trial
A support vector machine (SVM) for predicting preferred treatment position in radiotherapy of patients with breast cancer.
NYU 05-181 protocol compared the CT simulation in both supine and prone positions for 400 patients with breast cancer (200 left-breast and 200 right-breast) to identify which setup is better at sparing heart and lung involvement in the treatment process. The results demonstrated that all right-breast patients benefited from the prone treatment position, while for left-breast patients, 85% were better treated prone and 15% were better treated supine. Using the clinical data collected from this protocol, the authors aimed at developing an automated tool capable of identifying which of the left-breast cancer patients are better treated supine without obtaining a second CT scan in the supine position. ⋯ The authors' study showed that a feature-based classifier is feasible for predicting the preferred treatment position, based on features extracted from prone CT scans. The two-stage classifier achieved very high specificity at an acceptable expense of sensitivity.
-
The value of near-miss and error reporting processes in many industries is well appreciated and typically can be supported with data that have been collected over time. While it is generally accepted that such processes are important in the radiation therapy (RT) setting, studies analyzing the effects of organized reporting and process improvement systems on operation and patient safety in individual clinics remain scarce. The purpose of this work is to report on the design and long-term use of an electronic reporting system in a RT department and compare it to the paper-based reporting system it replaced. ⋯ Specially designed electronic event reporting systems in a radiotherapy setting can provide valuable data for process and patient safety improvement and are more effective reporting mechanisms than paper-based systems. Additional work is needed to develop methods that can more effectively utilize reported data for process improvement, including the development of standardized event taxonomy and a classification system for RT.
-
Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. ⋯ The authors demonstrated a simulation environment to validate and develop ultrasonic vascular imaging. An elaborate technique to integrate FSI and FIELD II ultrasound simulations was presented. This multiphysics simulation tool was applied to two imaging applications where distensible ultrasound phantoms are indispensable: Wall distension and shear rate measurement. Results showed that the method to couple fluid-structure interaction and ultrasound simulations provides realistic RF signals from the tissue and the blood pool.
-
To investigate the glandular dose magnitudes and characteristics resulting from image acquisition using a dedicated breast computed tomography (BCT) clinical prototype imaging system. ⋯ Acquisition of a BCT image with the automated tube output settings for a mean breast with the Koning Corp. clinical prototype results in mean glandular dose values approximately equivalent to three to five two-view mammographic examinations for a similar breast. For all breast sizes and compositions studied, this glandular dose ratio between acquisition with this BCT prototype and two-view mammography ranges from 1.4 to 7.2. In mammography, portions of the mean-sized breast receive a considerably higher dose than the mean value for the whole breast. However, only a small portion of a breast undergoing mammography would receive a glandular dose similar to that from BCT.
-
Comparative Study
Radiation dose evaluation in tomosynthesis and C-arm cone-beam CT examinations with an anthropomorphic phantom.
The objective of this study was to evaluate organ dose and the effective dose to patients undergoing tomosynthesis (TS) and C-arm cone-beam computed tomography (CBCT) examinations and to compare the doses to those in multidetector CT (MDCT) scans. ⋯ TS examinations with low doses and excellent resolutions in coronal images compared to recent MDCT would widely be used in tomographic examinations of the chest, abdomen, pelvis, skeletal-joints, and knee instead of MDCT examinations with significantly high doses. Since patient dose in C-arm CBCT was nearly the same level as that in recent MDCT, the same consideration for high radiation dose would be required for the use of CBCT.