Med Phys
-
Comparative Study
Evaluation of dosimetric margins in prostate IMRT treatment plans.
This work introduces a new concept--the dosimetric margin distribution (DMD)--and uses it to explain the sensitivity of a group of prostate IMRT treatment plans to patient setup errors. Prior work simulated the effect of setup errors on 27 prostate IMRT treatment plans and found the plans could tolerate larger setup errors than predicted by the van Herk margin formula. The conjectured reason for this disagreement was a breakdown in van Herk's assumption that the planned dose distribution conforms perfectly to target structures. ⋯ The principal conclusion is that target coverage in the presence of setup errors should be evaluated using the DMD, rather than the CTV-to-PTV margin distribution. The DMD is a useful planning metric, which generalizes the ICRU conformity index. DMDs could vary with number of beams, beam arrangements, TPS, and treatment site.
-
Evaluation of functional magnetic resonance imaging (fMRI) as a reliable clinical imaging tool requires accurate assessment and correction of head motion artifacts. As the correction of bulk head motion is vital, the loss of signal strength from the confounding effect of head motion on spin magnetization may be an additional factor in activation analysis error. This study focuses on the evaluation and correction of the spin saturation artifact that occurs when parts of adjacent slices are selected due to changing head positions in single-shot multislice acquisitions. ⋯ We evaluated the effect of spin saturation artifacts and the performance of the WASS correction using simulated fMRI time series synthesized with known true activation, motion, and the associated spin saturation artifact. Two different ranges of head rotations, [-5,5] and [-2,2] deg, were introduced and the effect of the spin saturation artifact was quantified to show 18% and 13% reduction in activation detection rate, respectively. Following the MSV motion and WASS correction, results indicate that WASS correction can improve activation detection by 17% relative to MSV only correction.
-
Experiments were conducted to determine optimal acquisition techniques for bone image decompositions for a prototype dual-energy (DE) imaging system. Technique parameters included kVp pair (denoted [kVp(L)/kVp(H)]) and dose allocation (the proportion of dose in low- and high-energy projections), each optimized to provide maximum signal difference-to-noise ratio in DE images. Experiments involved a chest phantom representing an average patient size and containing simulated ribs and lung nodules. ⋯ Optimal dose allocation was approximately 0.5-i.e., an equal dose imparted by the low- and high-energy projections. The results complement earlier studies of optimal DE soft-tissue image acquisition, with differences attributed to the specific imaging task. Together, the results help to guide the development and implementation of high-performance DE imaging systems, with applications including lung nodule detection and diagnosis, pneumothorax identification, and musculoskeletal imaging (e.g., discrimination of rib fractures from metastasis).
-
The aim of this study is to evaluate the impact of the patient dose due to the kilovoltage cone beam computed tomography (kV-CBCT) in a prostate intensity-modulated radiation therapy (IMRT). The dose distributions for the five prostate IMRTs were calculated using the Pinnacle treatment planning system. To calculate the patient dose from CBCT, phase-space beams of a CBCT head based on the ELEKTA x-ray volume imaging system were generated using the Monte Carlo BEAMnr code for 100, 120, 130, and 140 kVp energies. ⋯ By analyzing the vertical and horizontal dose profiles crossing the femur heads and isocenter, with and without the CBCT dose equal to 2% of the prescribed dose, it was found that there is about a 5% increase of dose at the femur head. Still, such an increase in the femur head dose is well below the dose limit of the bone in our IMRT plans. Therefore, under these dose fractionation conditions, it is concluded that, though CBCT causes a higher dose deposited at the bones, there may be no significant effect in the DVHs of critical tissues in the prostate IMRT.
-
Megavoltage cone-beam computed tomography (MV CBCT) is a highly promising technique for providing volumetric patient position information in the radiation treatment room. Such information has the potential to greatly assist in registering the patient to the planned treatment position, helping to ensure accurate delivery of the high energy therapy beam to the tumor volume while sparing the surrounding normal tissues. Presently, CBCT systems using conventional MV active matrix flat-panel imagers (AMFPIs), which are commonly used in portal imaging, require a relatively large amount of dose to create images that are clinically useful. ⋯ In addition, it was found that segmented detectors with greater thickness, higher density scintillator material, or lower density septal walls exhibit higher contrast-to-noise performance. Finally, the performance of various segmented detectors obtained at a relatively low dose (1.54 cGy) was compared with that of a phosphor screen similar to that employed in conventional MV AMFPIs. This comparison indicates that for a phosphor screen to achieve the same contrast-to-noise performance as the segmented detectors approximately 18 to 59 times more dose is required, depending on the configuration of the segmented detectors.