Med Phys
-
Comparative Study
A dynamic compensation strategy to correct patient-positioning errors in conformal prostate radiotherapy.
Traditionally, pretreatment detected patient-positioning errors have been corrected by repositioning the couch to align the patient to the treatment beam. We investigated an alternative strategy: aligning the beam to the patient by repositioning the dynamic multileaf collimator and adjusting the beam weights, termed dynamic compensation. The purpose of this study was to determine the geometric range of positioning errors for which the dynamic compensation method is valid in prostate cancer patients treated with three-dimensional conformal radiotherapy. ⋯ These data demonstrate the robustness of dynamic compensation for correction of patient-positioning errors in four-field conformal prostate radiotherapy, with minimal deviation from the original treatment plans even for errors greatly exceeding those commonly encountered in the clinic. Dynamic compensation can be performed remotely, thus eliminating errors that may result from unnecessary increases in treatment time or from secondary patient motion induced by couch motion during the repositioning process. Further, the ability of dynamic compensation to correct large positioning errors has implications for the accuracy necessary during the initial patient setup and, hence, patient throughput for prostate radiotherapy.
-
Temporal subtraction and dual-energy imaging are two enhanced radiography techniques that are receiving increased attention in chest radiography. Temporal subtraction is an image processing technique that facilitates the visualization of pathologic change across serial chest radiographic images acquired from the same patient; dual-energy imaging exploits the differential relative attenuation of x-ray photons exhibited by soft-tissue and bony structures at different x-ray energies to generate a pair of images that accentuate those structures. Although temporal subtraction images provide a powerful mechanism for enhancing visualization of subtle change, misregistration artifacts in these images can mimic or obscure abnormalities. ⋯ The registration accuracy of the soft-tissue-based temporal subtraction images was rated superior to that of the conventional temporal subtraction images. Registration accuracy also was evaluated objectively through an automated method, which achieved an area-under-the-ROC-curve value of 0.92 in the distinction between temporal subtraction images that demonstrated clinically acceptable and clinically unacceptable registration accuracy. By combining dual-energy soft-tissue images with temporal subtraction, misregistration artifacts can be reduced and superior image quality can be obtained.
-
For Monte Carlo linac simulations and patient dose calculations, it is important to accurately determine the phase space parameters of the initial electron beam incident on the target. These parameters, such as mean energy and radial intensity distribution, have traditionally been determined by matching the calculated dose distributions with the measured dose distributions through a trial and error process. This process is very time consuming and requires a lot of Monte Carlo simulation experience and computational resources. ⋯ Due to the existence of statistical uncertainty in simulated dose distributions, it is practically impossible to determine the best energy/radius combination; we have to accept a group of energy/radius combinations. We have also investigated the minimum required data set for accurate determination of the initial beam parameters. We found that the percent depth dose curves along or only a lateral profile at certain depth for a large field size is not sufficient and the minimum data set should include several lateral profiles at various depths as well as the central axis percent depth dose curve for a large field size.
-
This paper proposes a novel respiratory detection method based on diaphragm motion measurements using a 2D ultrasound unit. The proposed method extracts a respiratory signal from an automated analysis of the internal diaphragm motion during breathing. The respiratory signal may be used for gating. ⋯ The resulting MI and CC values were discovered to produce a signal corresponding to the respiratory cycle in both phase and magnitude. We also studied the diaphragm motion of two volunteers during repeated deep inspiration breath holds (DIBH) and found a slight relaxation motion of the diaphragm during the DIBH, suggesting that the residual motion may be important for treatments delivered at this breathing phase. Applying the proposed respiratory detection method to these ultrasound studies, we found that the MI and CC values demonstrate the relaxation behavior, indicatingthat our method may be used to determine the radiation triggering time for a DIBH technique.
-
Spatial-angular compounding is a new technique that enables the reduction of noise artifacts in ultrasound elastography. Under this method, compounded elastograms are obtained from a spatially weighted average of local strain estimated from radio frequency (rf) echo signals acquired at different insonification angles. In previous work, the acquisition of the rf signals was performed through the lateral translation of a phased-array transducer. ⋯ In this article, we investigate the performance of angular compounding for elastography by using beam steering on a linear-array transducer. Quantitative experimental results demonstrate that spatial angular compounding provides significant improvement in both the elastographic signal-to-noise ratio and the contrast-to-noise ratio. For the linear array transducer used in this study, the optimum angular increment is around 1.5 degrees-3.75 degrees, and the maximum angle that can be used in angular compounding should not exceed 10 degrees.