Radiat Oncol
-
To integrate 3D MR spectroscopy imaging (MRSI) in the treatment planning system (TPS) for glioblastoma dose painting to guide simultaneous integrated boost (SIB) in intensity-modulated radiation therapy (IMRT). ⋯ Delivering standard doses to conventional target and higher doses to new target volumes characterized by MRSI and CE is now possible and does not increase dose to organs at risk. MRSI and CE abnormalities are now integrated for glioblastoma SIB-IMRT, concomitant with temozolomide, in an ongoing multi-institutional phase-III clinical trial. Our method of MR spectroscopy maps integration to TPS is robust and reliable; integration to neuronavigation systems with this method could also improve glioblastoma resection or guide biopsies.
-
Recent studies from Italy, Japan and Norway have confirmed previous reports, which found that a large variety of palliative radiotherapy regimens are used for painful bone metastases. Routine use of single fraction treatment might or might not be the preferred institutional approach. ⋯ In the present mini-review we discuss the questions of whether doctors are ignoring evidence-based medicine or whether we need additional studies targeting specifically those patient populations where recent surveys identified inconsistent treatment recommendations, e.g. because of challenging disease extent. We identify open questions and provide research suggestions, which might contribute to making radiation oncology practitioners more confident in selecting the right treatment for the right patient.
-
Randomized Controlled Trial
Whole brain helical Tomotherapy with integrated boost for brain metastases in patients with malignant melanoma-a randomized trial.
Patients with malignant melanoma may develop brain metastases during the course of the disease, requiring radiotherapeutic treatment. In patients with 1-3 brain metastases, radiosurgery has been established as a treatment option besides surgery. For patients with 4 or more brain metastases, whole brain radiotherapy is considered the standard treatment. In certain patients with brain metastases, radiation treatment using whole brain helical Tomotherapy with integrated boost and hippocampal-sparing may improve prognosis of these patients. ⋯ The present prospective, randomized two-armed trial aims to exploratory investigate the treatment response to conventional whole brain radiotherapy applying 30 Gy in 10 fractions versus whole brain helical Tomotherapy applying 30 Gy in 10 fractions with an integrated boost of 50 Gy to the brain metastases as well as hippocampal-sparing in patients with brain metastases from malignant melanoma. The main inclusion criteria include magnetic resonance imaging confirmed brain metastases from a histopathologically confirmed malignant melanoma in patients with a minimum age of 18 years. The main exclusion criteria include a previous radiotherapy of the brain and not having recovered from acute high-grade toxicities of prior therapies. The primary endpoint is treatment-related toxicity. Secondary endpoints include imaging response, local and loco-regional progression-free survival, overall survival and quality of life.
-
Randomized Controlled Trial
Radiation-related quality of life parameters after targeted intraoperative radiotherapy versus whole breast radiotherapy in patients with breast cancer: results from the randomized phase III trial TARGIT-A.
Intraoperative radiotherapy (IORT) is a new treatment approach for early stage breast cancer. This study reports on the effects of IORT on radiation-related quality of life (QoL) parameters. ⋯ In the randomized setting, important radiation-related QoL parameters after IORT were superior to EBRT. Non-randomized comparisons showed equivalent parameters in the IORT-EBRT group and the control groups.
-
To determine the safety and efficacy of hypofractionated intensity modulated radiation therapy (Hypo-IMRT) using helical tomotherapy (HT) with concurrent low dose temozolomide (TMZ) followed by adjuvant TMZ in patients with glioblastoma multiforme (GBM). ⋯ Hypo-IMRT using HT given with concurrent TMZ is feasible and safe. The median OS and PFS are comparable to those observed with conventional fractionation. Hypofractionated radiation therapy offers the advantage of a shorter treatment period which is imperative in this group of patients with limited life expectancy.