Clinical pharmacology and therapeutics
-
Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.
-
Clin. Pharmacol. Ther. · Dec 2016
The Impact of Breakthrough Therapy Designation on Development Strategies and Timelines for Nononcology Drugs and Vaccines.
The US Food and Drug Administration (FDA) Safety and Innovation Act (FDASIA, 2012) introduced the Breakthrough Therapy Designation (BTD), a new tool to expedite development of medicines to treat serious or life-threatening diseases. The majority of BTDs have gone to oncology drugs, and a recent publication by Shea et al.1 reviewed the impact of BTD on oncology drug development. This article reviews the impact of BTD on development strategies and timelines for nononcology drugs.
-
Clin. Pharmacol. Ther. · Dec 2016
Leveraging Industry-Academia Collaborations in Adaptive Biomedical Innovation.
Despite the rapid pace of biomedical innovation, research and development (R&D) productivity in the pharmaceutical industry has not improved broadly. Increasingly, firms need to leverage new approaches to product development and commercial execution, while maintaining adaptability to rapid changes in the marketplace and in biomedical science. Firms are also seeking ways to capture some of the talent, infrastructure, and innovation that depends on federal R&D investment. ⋯ One example of these external innovation initiatives is the Sanofi-MIT Partnership, which provided seed funding to MIT investigators to develop novel solutions and approaches in areas of interest to Sanofi. These projects were highly collaborative, with information and materials flowing both ways. The relatively small amount of funding and short time frame of the awards built an adaptable and flexible process to advance translational science.
-
Clin. Pharmacol. Ther. · Dec 2016
Bottom-up Meets Top-down: Complementary Physiologically Based Pharmacokinetic and Population Pharmacokinetic Modeling for Regulatory Approval of a Dosing Algorithm of Valganciclovir in Very Young Children.
Population pharmacokinetic (PopPK) and physiologically based pharmacokinetic (PBPK) models are frequently used to support pediatric drug development. Both methods have strengths and limitations and we used them complementarily to support the regulatory approval of a dosing algorithm for valganciclovir (VGCV) in children <4 months old. ⋯ PBPK and PopPK confirmed that the proposed VGCV dosing algorithm achieves similar GCV exposures in children of all ages and that the alternative dosing algorithm leads to underexposure in a substantial fraction of patients. Our approach raised the confidence in the VGCV dosing algorithm for children <4 months old and supported the regulatory approval.
-
Clin. Pharmacol. Ther. · Sep 2016
CD19-Targeted chimeric antigen receptor-modified T-cell immunotherapy for B-cell malignancies.
Chimeric antigen receptors (CARs) comprise a tumor-targeting moiety, often in the form of a single chain variable fragment derived from a monoclonal antibody, fused to one or more intracellular T-cell signaling sequences. Lymphodepletion chemotherapy followed by infusion of T cells that are genetically modified to express a CD19-specific CAR is a promising therapy for patients with refractory CD19(+) B-cell malignancies, producing rates of complete remission that are remarkably high in acute lymphoblastic leukemia and encouraging in non-Hodgkin lymphoma and chronic lymphocytic leukemia. ⋯ CAR-modified T-cell immunotherapy can be complicated by cytokine release syndrome and neurologic toxicity, which in most cases are manageable and reversible. Here we review recent clinical trial data and discuss issues for the field.